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Abstract Mitigating the adverse impacts caused by increasing flood risks in urban coastal communities
requires effective flood prediction for prompt action. Typically, physics‐based 1‐D pipe/2‐D overland flow
models are used to simulate urban pluvial flooding. Because these models require significant computational
resources and have long run times, they are often unsuitable for real‐time flood prediction at a street
scale. This study explores the potential of a machine learning method, Random Forest (RF), to serve as a
surrogate model for urban flood predictions. The surrogate model was trained to relate topographic and
environmental features to hourly water depths simulated by a high‐resolution 1‐D/2‐D physics‐based model
at 16,914 road segments in the coastal city of Norfolk, Virginia, USA. Two training scenarios for the RF
model were explored: (i) training on only the most flood‐prone street segments in the study area and
(ii) training on all 16,914 street segments in the study area. The RF model yielded high predictive skill,
especially for the scenario when the model was trained on only the most flood‐prone streets. The results also
showed that the surrogate model reduced the computational run time of the physics‐based model by a factor
of 3,000, making real‐time decision support more feasible compared to using the full physics‐based
model. We concluded that machine learning surrogate models strategically trained on high‐resolution and
high‐fidelity physics‐based models have the potential to significantly advance the ability to support decision
making in real‐time flood management within urban communities.

1. Introduction

In recent years, flooding due to climate change and sea level rise has become a major concern of commu-
nities along the U.S. East coast (Ezer & Atkinson, 2014; Sweet & Park, 2014). The situation will be aggravated
by projected increases in rainfall frequency and volume (Prein et al., 2017), as well as significant increases in
relative sea level (Kulp & Strauss, 2019; Vermeer & Rahmstorf, 2009). Although most past studies assessing
flood impacts primarily focused on rarely occurring, extreme storm events and their associated storm surge,
the cumulative cost of relatively frequent, low‐level flooding, also known as nuisance or recurrent flooding,
can be greater than the extreme events (Moftakhari et al., 2017). Nuisance flooding caused by rain and tide
adversely affects social and economic activities by disrupting transportation systems (Jacobs et al., 2018;
Suarez et al., 2005) and compromising the performance of storm sewers (Flood & Cahoon, 2015). These
events can be exacerbated by the joint occurrence of high tides and even moderate rainfall events, given
the interplay between tide and rainfall in coastal communities (Lian et al., 2015; Shen et al., 2019;
Sreetharan et al., 2017).

To assist decision makers in anticipating potential flooded areas and preemptively taking measures to miti-
gate socioeconomic disruptions caused by urban flooding, researchers and practitioners have focused on
building accurate real‐time flood prediction models. To simulate urban pluvial flooding, physics‐based
models are typically used. Applications of one‐dimensional (1‐D) hydraulic models such as SWMM
(Rossman, 2004) and MIKE 11 (Danish Hydraulic Institute [DHI], 2017a) are common for simulating
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flow through storm sewer networks and river channels. However, these models typically have less accurate
lumped approaches for simulating overland flow (Mark et al., 2004). To more realistically simulate overland
flow, two‐dimensional (2‐D) or 1‐D/2‐D dual drainage models like SOBEK (Deltares, 2018), MIKE FLOOD
(Danish Hydraulic Institute [DHI], 2017b), HEC‐RAS 2D, and Two‐dimensional Unsteady Flow (TUFLOW)
models (BMT WBM, 2016) can be used. However, 2‐D models are computationally expensive (Leandro
et al., 2009), difficult to calibrate, especially at a city scale (Caviedes‐voullième et al., 2012), and typically
require long running times (Lhomme et al., 2006), making them not yet suitable for real‐time flood predic-
tion (Bermúdez et al., 2018).

Reducing the complexity of these high‐fidelity and computationally intensive physics‐based models could
provide amore efficient and practical solution for supporting real‐time flood prediction. These reduced‐com-
plexity models are often referred to as surrogate models (Ong et al., 2003; Queipo et al., 2005; Razavi
et al., 2012). For the purposes of this paper, surrogate models are grouped into two broad categories. The first
category is lower‐fidelity surrogates. Lower‐fidelity surrogates are still physics‐based but are less
comprehensive compared to the original physics‐based models and focus on the dominant physical pro-
cesses relevant to a particular application (Alexandrov et al., 2001; Alexandrov & Lewis, 2001; Bermúdez
et al., 2018; Madsen & Langthjem, 2001). The second category of surrogate models is response‐surface
models. A response‐surface model uses machine learning (sometimes referred to as data‐driven) models
to approximate the original model response without directly simulating physical processes (Box &
Wilson, 1951; Chen et al., 2020; James et al., 2018; Razavi et al., 2012; Simpson et al., 2001; Yan &
Minsker, 2006). The latter approach of using machine learning models was found by Bermúdez et al. (2018)
to be more precise in reproducing flood dynamics in a highly urbanized flat terrain and capable of gaining
higher computational speedup factors compared to a low‐fidelity surrogate model. Therefore, a machine
learning surrogate approach was used in this study.

Machine learning or data‐driven approaches have been used in water resources applications for over a dec-
ade (Khu et al., 2004). They have been used to approximate hydrodynamic and hydrologic models of river
systems (Solomatine & Torres, 1996; Wolfs et al., 2015), flow in sewer systems (Wolfs & Willems, 2017), rat-
ing curves (Wolfs & Willems, 2014), and to calibrate rainfall‐runoff processes (Khu et al., 2004). In flooding
applications, machine learning techniques, such as k means clustering and neural networks, were used by
Chang et al. (2010) to develop a regional flood inundation system based on a 2‐D noninertial overland flow
model. A real‐time inundation forecasting model was developed by Jhong et al. (2017) using a support vector
machine (SVM) to approximate inundation depth simulated by a FLO‐2D model at reference points. These
depths were then spatially expanded using a geographic information system (GIS) to generate inundation
maps during typhoons. Liu and Pender (2015) replicated the evolution of water depth and velocity from
an ISIS2D model using flood hydrographs as input. Bermúdez et al. (2019) used discharge and tide levels
in three streams as input data to approximate water depth and velocity at 25,000 control points simulated
by the 2‐D shallow water model Iber. The approximated water depth was interpolated to generate a flood
inundation map. Studies done by Bermúdez et al. (2018) and Berkhahn et al. (2019) considered urban set-
tings for real‐time pluvial flood modeling. Bermúdez et al. (2018) emulated flood volume in four small
regions, which was converted to flood depth using GIS. Berkhahn et al. (2019) approximated maximum
water depth on streets using an artificial neural network (ANN) during 2 and 1 hr synthetic storm events
simulated by the 1‐D/2‐D dual drainage model HE 2‐D.

Despite the increased use of machine learning techniques in water resources and flood inundation model-
ing, in particular, there are still unresolved research questions. Some of the past studies considered flood
hydrographs or discharge in a channel (river or drainage canal) to model flood inundation (Bermúdez
et al., 2019; Chang et al., 2010; Liu & Pender, 2015). These studies mainly focused on the inundation that
would occur if the capacity of the channel was exceeded due to a storm event and did not explain the flood-
ing occurring inland due to capacity exceedance of storm water systems. The use of GIS algorithms was
required for studies by Bermúdez et al. (2018) and Jhong et al. (2017) to estimate inundation depth following
the use of a machine learningmethod. The street‐level floodmodel developed by Berkhahn et al. (2019) in an
urban setting solely employed machine learning to estimate water depth, but only the maximum water
depth during a storm event was simulated. Time series characteristics of flooding to estimate not only flood
depth but also duration were not addressed. Studies into real‐time street‐level flood modeling solely using
machine learning and depicting the evolution of water depth on streets during storm events in an urban‐
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coastal environment, rather than only the flood peak, are lacking. Additionally, previous studies used ANNs
(Berkhahn et al., 2019; Bermúdez et al., 2018; Chang et al., 2010) or SVMs (Bermúdez et al., 2019; Jhong et
al., 2017; Liu & Pender, 2015) to develop surrogate models for flood prediction. Less work has focused on the
use of Random Forest (RF) as surrogate models for street‐scale flood prediction, while RFs have shown sig-
nificant skill for other application areas in water resources for flood hazard risk assessment (Wang
et al., 2015), analyzing topographic control on overland flow (Loos & Elsenbeer, 2011), forecasting reservoir
inflow (Yang et al., 2017), and discharge (Yang et al., 2016), estimating flood severity (Sadler et al., 2018) and
estimating soil moisture for flood risks and crop viability (Breen et al., 2020).

In this study, these research gaps are addressed by exploring the use of an RF as a surrogate model to emulate
the response from a complex 1‐D pipe/2‐D overland hydrodynamic model using a TUFLOWmodel built and
validated for a large portion of the coastal city of Norfolk, Virginia, USA. This model expands on work
described by Shen et al. (2019) that built a TUFLOW model for a smaller portion of Norfolk. The
TUFLOW model was capable of simulating street‐scale urban‐coastal flooding. RF surrogate models were
developed in this study to approximate TUFLOW‐simulated floods occurring on the streets. The study area
had 16,914 street segments, covering nearly 700 km of roadways in the region. Topographic (e.g., elevation,
topographic wetness index, and depth to water) and environmental (e.g., hourly rainfall, cumulative rainfall
in previous hours, and hourly tide) features were used to predict TUFLOW‐simulated water depths for these
street segments during each hour of a storm event. Sixteen different storm events were used to train the RF
models, and four other storm events were used to test the models. Two different strategies for training the RF
surrogate models were explored: (i) training on only the most flood‐prone street segments and (ii) training
on all 16,914 street segments. The ability of the surrogate models to reduce computational expense for
real‐time flood warning applications was quantified as well. The goal of this research was to advance the
ability to perform street‐scale, real‐time flood warning for urban coastal communities needed to address
the pressing problem of nuisance flooding. Beyond this application area, the goal of this research was also
to advance understanding of the mutual benefit of machine learning and physics‐based modeling
approaches that, when used in combination, offer a powerful means to simulate complex hydrologic
systems.

2. Materials and Methods
2.1. Study Area

Norfolk, Virginia, USA (Figure 1) is located in the Hampton Roads region of Virginia and is the second most
populous city in Virginia with significant commercial, military, and historical importance. Norfolk is the
home to the world's largest naval bases, one of the two North Atlantic Treaty Organization (NATO)
Supreme Allied Commander Transformation headquarters, and the second busiest port on the East Coast
of the United States. Norfolk and the surrounding Hampton Roads region have been experiencing nuisance
flooding due to low elevations, sea level rise, and regional land subsidence (Eggleston & Pope, 2013;
Kleinosky et al., 2007). It is the second most vulnerable region in the United States to coastal flooding after
NewOrleans (Fears, 2012). The city is also actively pursuing innovative measures for improving its resilience
to flooding. Norfolk is one of the Rockefeller 100 Resilient Cities (100 Resilient Cities, 2019) and has its own
Office of Resilience. Considering its vulnerability to nuisance flooding, the vital role Norfolk plays in the
national economy and security, and their active work in resilience, Norfolk is an ideal study area for this
research.

2.2. Data
2.2.1. Environmental and Topographic Data
The environmental data used to train the surrogate model comprise rainfall and tide level observations.
Daily and 15 min rainfall observations were obtained from U.S. National Oceanic and Atmospheric
Administration (NOAA) station at Norfolk International Airport (NOAA, 2018a) and Hampton Roads
Sanitation District (HRSD) observation sites, respectively. Hourly tide levels referenced to the North
American Vertical Datum (NAVD88) were obtained from NOAA's Sewells Point station (NOAA, 2018b).
The data were obtained for the simulation duration 1 January 2016 to 31 December 2018. Locations of the
rain gauges and tide gauge used in this study are shown in Figure 1. A 1 m Digital Elevation Model
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(DEM) was obtained from the U.S. Geological Survey (USGS) through their National Elevation Dataset
(NED) program (U.S. Geological Survey, 2016).
2.2.2. Physics‐Based Model: TUFLOW
Street‐level surface water depths were simulated using the physics‐based TUFLOWmodel. TUFLOW solves
2‐D equations for shallow water and free surface flow to simulate overland flow, and it is coupled with the
1‐D hydrodynamic network software ESTRY (Syme, 2001) to simulate pipe flow. The 1‐D pipe/2‐D overland
hydrodynamic flood model used in this study was an expanded version of the model described by Shen
et al. (2019), and readers are referred to this reference for details on model construction, calibration, and eva-
luation process. The model used in this analysis covered an area of 56.4 km2 in Norfolk, VA, as shown in
Figure 1. The TUFLOW model used bare‐earth DEM, which was modified using building footprints and
heights. The study area had about 29,000 residential and commercial buildings. Implementing a large num-
ber of buildings can potentially increase model computing time and instability. Therefore, only buildings
with areas greater than 500 m2 were used to represent large commercial buildings and to reduce model com-
plexity (Shen, 2020). The model simulated surface flooding at a 5 m spatial resolution and 1 hr time steps,
which was then used to estimate water depths on street segments.
2.2.3. Roadway Network and Crowdsourced Data
A geospatial data set of the Norfolk roadway network was obtained from the city of Norfolk (City of Norfolk
GIS Bureau, 2018a). To identify streets with high flood risk, flood reports cataloged in the city's System to
Track, Organize, Record, and Map (STORM) from September 2010 to October 2018 were used. STORM data
provided latitude and longitude of the locations where flood reports were made daily by city workers. The
top six locations with the highest number of flood reports are shown in Figure 1. Flood reports were also
obtained from the crowdsourced navigation app Waze (owned by Google), for September 2017 to August

Figure 1. Map of the study area in Norfolk, VA, USA, showing rain and tide monitoring stations, the 1‐D/2‐D physics‐
based TUFLOW model boundary, and top flood‐prone streets within the model domain.
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2018 to validate flood occurrences. Waze allows users to report current conditions on streets, including
flooded roads. It provides the exact time and location a report was made by a user to the nearest minute.

2.3. Machine Learning Model: RF Algorithm

RF is an ensemble machine learning algorithm for performing classification or regression that was first
introduced by Breiman (2001). It makes predictions using a large collection of decorrelated decision trees
with each decision tree in the RF algorithm learning from a random subset and input features.
Predictions are made by combining responses from individual trees: mode of predicted classes for classifica-
tion and average predictions for regression problems (Friedman et al., 2001). Decision trees are prone to
overfitting to training data sets (Murphy, 2012). This issue is addressed in RF by introducing randomness
in the training process and using enough trees to reduce overfitting. RFmodels can be optimized by adjusting
hyperparameters such as the number of trees, number of features considered at each split, maximumdepth of
each decision tree, andminimumnumber of samples in a node before splitting. Additionally, another impor-
tant quality of RF is its ability to estimate the importance of input features in predictions. The feature impor-
tance can be helpful to disregard unnecessary features and inform their significance in RF predictions.

Because the output (label) in this study was a continuous variable, surface water depth, an RF regression
model was used. The Scikit‐learn “ensemble.RandomForestRegressor” module in Python (Pedregosa
et al., 2011; Scikit‐learn Developers, 2018a) was used for RF regression. The scripts and data used for the ana-
lysis are available on HydroShare (Zahura, 2019a, 2019b, 2019c).

2.4. Input Data Preprocessing

Environmental and topographic data were used to generate the input features for the RF model described in
Table 1. Rainfall data from HRSD stations at 15 min intervals were aggregated to generate four types of
hourly rainfall features considering different types of rainfall events: hourly rainfall, maximum 15 min rain-
fall, cumulative rainfall during the previous 2 hr, and cumulative rainfall during the previous 72 hr.
Maximum 15 min rainfall was important for those flood events when a large amount of rainfall occurred
within a short period. Rainfall data during the previous 2 and 72 hr were used to account for antecedent
moisture conditions and capacity exceedance of storm water systems due to rainfall occurrence immediately
before the hour of interest and during the past few days, respectively. Because rainfall amounts vary from
station to station, inverse distance weighted interpolation was performed for these rainfall features to esti-
mate spatial variability within the study region. In an urban coastal environment, pluvial flooding can be
exacerbated by the concurrent occurrence of high tide with rainfall. Therefore, hourly tide levels obtained
from NOAA were also used as environmental features.

Three topographic features were used as model inputs: elevation, topographic wetness index (TWI), and
depth to water (DTW). TWI and DTW were derived using the 1 m DEM. TWI, defined by Beven and
Kirkby (1979) is

Table 1
Input Features for the RF Model

Input features Feature abbreviation Unit Variability

Environmental features
Total hourly rainfall RH mm Spatial and temporal
Maximum 15 min rainfall in an hour MAX15 mm Spatial and temporal
Cumulative rainfall in previous 2 hr HR_2 mm Spatial and temporal
Cumulative rainfall in previous 72 hr HR_72 mm Spatial and temporal
Hourly tide level from NAVD TD_HR m Temporal

Topographic features
Elevation ELV m Spatial
Topographic wetness index TWI — Spatial
Depth to water index DTW cm Spatial
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TWI ¼ ln
α

tan β

� �
; (1)

where α is the contributing area per unit contour length at a given point and tanβ is the local slope at that
point in that catchment. TWI is a measure of the tendency of an area to accumulate runoff: High TWI
values indicate a high potential for runoff accumulation.

DTW, proposed by Murphy et al. (2007), is an estimate of soil moisture conditions for each pixel (i.e., the
smallest unit) of a DEM defined as

DTW ¼ ∑
dzi
dxi

ai

� �
xc; (2)

where
dzi
dxi

is the slope of a pixel i in the landscape along the least‐cost path to the nearest surface water

pixel, a is either 1 or 20.5 depending on whether the path crosses the pixel parallel or diagonally to the
pixel boundary, and xc is pixel size (Murphy et al., 2009). DTW approximates the elevation difference
between a pixel in the landscape and the nearest surface water pixel along the least‐slope path.
Landscape pixels closer to surface water, in terms of both distance and elevation, have smaller values of
DTW, suggesting both wetter soil and the path of least resistance for tidal flooding.

In terms of flooding impacts on roads, it was assumed that to restrict vehicular movement on the street due
to flooding, it is sufficient to know the water depth at the deepest point along a given street segment.
Therefore, road link centerlines were divided into 50 m roadway segments. Road width data were not
available for all road links in the study domain. Because an average road lane width is 3.6 m in the
United States (US Department of Transportation, 2014) and it was assumed that any street with missing
width information has two lanes, the width for these road segments was assumed to be 7.2 m. A geospatial
data set of road segments with 50 m lengths and 7.2 m widths was created using the ArcGIS software system
(Esri, 2020), as shown in Figure 2. For different storm events at the location of each road segment, the mean

Figure 2. Map showing an example of road segments along the street centerlines for a small portion of the study area.
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values of each input feature and the maximum value of TUFLOW‐simulated hourly water depths were
extracted. The underpasses in Norfolk have pump stations to prevent flooding. However, not enough
information about these pump stations was available to represent them in the TUFLOW model. A
limitation of the TUFLOW model was that it excluded pump information for road underpasses. As a
result, these road underpasses and nearby roads were predicted to flood at levels deeper than might be
expected in real life due to pumps at these underpasses. Therefore, these underpasses covering 3% of the
road network analyzed in this study were excluded from the machine learning model. The end result was
an RF model with 16,914 road segments capable of predicting hourly water depth on each road segment
for a period before and after a storm event.

2.5. Model Training and Evaluation

From the daily rainfall data collected from Norfolk International Airport Station, the top 20 daily rainfall
events were selected to build the flood prediction model (Table 2). The storm events were divided into an
80%/20% split for training and testing, respectively, which is a common approach in RF modeling
(Agranoff et al., 2006; McFee & Lanckriet, 2010; Muchoney et al., 2000; Peng et al., 2004). The 16 training
events included storm events of different durations and total rainfall depths. The events contained informa-
tion from 2 or 3 hr before the storm event to several hours after the storm ended, resulting in a total of 375 hr
of storm data in the training data set. For test event selection, the 20 daily observations were arranged in des-
cending order and divided into four equal groups. Although we intended to choose one test event from each
of the four groups, the group with the least rainfall amount did not have any Waze observations. Therefore,
one test event was selected from each of the first two groups, and two events were chosen from the third
group of daily rainfall observations. All of these test events included flood reports from Waze to verify
flooded locations.

The workflow to prepare the input data set for the RF model is shown in Figure 3. This process was carried
out for two different model training strategies. The first strategy was to train the surrogate model for just the
six most flood‐prone street segments in the study domain. These street segments were locations with the
highest number of flood reports from the city of Norfolk and are shown in Figure 1. This more targeted strat-
egy made an accurate model for these six locations but ignored network‐wide flooding impacts. The sizes of
the training feature and label data sets for this strategy were 2,250 rows and 8 columns, and 2,250 rows and 1

Table 2
Training and Testing Events Used to Build the RF Models

Date Daily rainfall (mm) Maximum hourly rainfall averaged across stations (mm) Train or test

10/8/2016 188.98 29.738 Train
7/31/2016 177.29 34.29 Train
9/21/2016 99.82 21.84 Train
8/29/2017 99.82 13.97 Train

8/11/2018 94.49 27.94 Test

9/19/2016 77.22 23.37 Train

5/6/2018 65.28 18.03 Test

9/3/2016 61.21 13.21 Train
9/20/2016 60.45 10.67 Train
7/30/2018 59.94 18.54 Train
6/22/2018 57.91 15.49 Train
6/5/2016 53.59 28.19 Train

10/29/2017 53.09 7.06 Test

8/20/2018 52.32 35.31 Train

5/28/2018 47.75 13.46 Test

10/9/2016 45.72 19.30 Train
7/15/2017 45.47 28.96 Train
8/9/2016 44.70 15.49 Train
1/2/2017 43.94 8.38 Train
8/7/2017 43.94 16.76 Train

Note. Testing events are highlighted.
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column, respectively. The second strategy was to provide citywide flood predictions by training and testing
an RF model for all 16,914 road segments within the TUFLOW model domain. The sizes of the training
feature and label data sets for the second strategy were 6,342,750 rows and 8 columns, and 6,342,750 rows
and 1 column, respectively. The RF model hyperparameters were optimized using GridSearchCV in
Scikit‐learn. GridSearchCV uses k‐fold cross‐validation to optimize model parameters while iterating over
all possible combinations of provided parameter values. In k‐fold cross‐validation, the data set is
partitioned into k number of groups. In each iteration, (k−1) groups were used to train, and the
remaining group was used to validate the model for a selected set of parameters. Each group was used
once as the validation data set. The values of hyperparameters that maximized model accuracy were
selected as the best parameter values. The main hyperparameters to be tuned in an RF model for
improved performance were the number of trees (n_estimators) and the number of features to be
considered at each split (max_features) (Scikit‐learn Developers, 2018b). GridSearchCV was used on the
training data set to optimize max_features for n_estimators varying between 1 and 300 with fourfold
cross‐validation. To determine the RF model sensitivity to different numbers of trees, the model was
trained using n_estimators varying between 1 and 300 with the best performing max_features value from
GridSearchCV. The other hyperparameters, such as the maximum depth of each tree and the minimum
number of samples in a node before splitting, were set to default values “None” and two, respectively.

The training data set for the second strategy had samples with water depths ranges 0–0.1, 0.1–0.2, 0.2–0.3,
and ≥0.3 m with ratios of 15.6:4.5:1.3:1; there were fewer samples in groups with high water depths, result-
ing in an imbalanced data set. As an imbalanced data set can interfere with model performance, different
sampling techniques were tested to address this problem. The four sampling methods tested in this study
were as follows: (i) Samples with water depths >0.2 m were assigned a “sample_weight”= 2, and the
remaining samples had “sample_weight”=1 while fitting the RF model (size of training feature and label
data sets 6,342,750 rows and 8 columns, and 6,342,750 rows and 1 column, respectively); (ii) oversampling
the minority group (i.e., water depths ≥0.3 m) to obtain a 1:1 ratio between sample groups with depths
≥0.3 and <0.3 m (no sample weight was assigned in this case; size of training feature and label data sets
12,227,103 rows and 8 columns, and 12,227,103 rows and 1 column, respectively); (iii) combination of meth-
ods (i) and (ii) (size of training feature and label data sets 12,227,103 rows and 8 columns, and 12,227,103
rows and 1 column, respectively); and (iv) the data set was used without any modification or sample

Figure 3. Workflow showing steps to generate the input data set for the RF models, approximate water depths using the
models, and evaluate the models' performance.
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weight (size of training feature and label data sets 6,342,750 rows and 8 columns, and 6,342,750 rows and 1
column, respectively).

The performance of the surrogate model was assessed by comparing RF‐predicted water depths on streets to
TUFLOW‐simulated water depths. Location‐wise mean absolute errors (MAE) and root mean squared
errors (RMSE) of RF‐predicted and TUFLOW‐simulated water depths for different test events were calcu-
lated to assess the performance of the RF model in predicting water depth at each road segment as

MAEi mð Þ ¼ 1
n
∑ yrf; h; i − ytuflow; h; i

�� �� (3)

and

RMSEi mð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ yrf; h; i − ytuflow; h; i

� 	2
n

s
; (4)

where i indicates the location of water depth, h represents an hour during the storm event, and n is the
total number of hours during the storm event, including 1 hr before and after the event. RF‐predicted
and TUFLOW‐simulated water depths are represented by yrf and ytuflow, respectively.

Pregnolato et al. (2017) found that, at a 0.30 m depth of water, a road becomes impassable for a passenger
vehicle. Related work has shown that the limiting values of water depths on roadways are 0.10 and
0.30 m for high velocity and still water, respectively (Shand et al., 2011). From a decision‐making perspec-
tive, road closure should occur at water depth above 0.30 m in most cases because the height of a car's air
inlet ranges between 25 and 35 cm (AusRoads, 2008; Yin et al., 2016). Thus, three threshold values, 0.10,
0.20, and 0.30 m, were used to determine flood and nonflood locations within the road segment data set.
These flood and nonflood designations were then used to assess the RF model's performance using the eva-
luation metrics precision, recall, and F1 score for the three threshold values. Precision and recall metrics
were derived using true positive (TP), false positive (FP), and false negative (FN) values for each test event
and flood threshold. TP, FP, and FN indicated the number of correctly predicted flood locations,
TUFLOW‐simulated nonflood locations incorrectly predicted as flood locations by the RF model, and
TUFLOW‐simulated flood locations incorrectly predicted as nonflood locations by the RF model, respec-
tively. Recall, also known as sensitivity, was the proportion of TUFLOW‐simulated flooding that was cor-
rectly predicted by the RF surrogate model and was defined as

Recall ¼ Correctly predicted flood locations by RF
Total simulated flood locations by TUFLOW

¼ TP
TPþ FN

; (5)

with values ranging from zero to one with one indicating that the model correctly predicted all flood loca-
tions. A low value of recall indicates underprediction of flooding, which may threaten human safety and
cause property damage. In contrast, higher recall indicates most of the flooded areas were predicted cor-
rectly for necessary actions. Precision, also termed positive predictive value, was the proportion of total
RF‐predicted flooding that correctly matched with TUFLOW‐simulated flooding and was defined as

Precision ¼ Correctly predicted flood locations by RF
Total predicted flood locations by RF

¼ TP
TPþ FP

; (6)

with values ranging from zero to one where one indicates that all predicted flood locations were correct.
Low precision indicates overprediction of flooding, which may result in unnecessary actions in nonflood
locations. F1 score is the weighted average of precision and recall and is defined as

F1 score ¼ 2*Precision*Recall
Precisionþ Recall

; (7)

with values ranging from zero to one. With perfect precision and recall scores, the F1 score reaches a value
of one. All performance metrics were calculated using the sklearn.metrics module (Scikit‐learn
Developers, 2018c) in Python.
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For all model runs, two different machines were used: one for the TUFLOW simulations and another for the
RF surrogate model training and testing. The TUFLOW model was run using a machine with 64GB RAM,
four cores each running at 4.4 GHz, and two graphical processing units (GPU). The RF models, which
run on a CPU rather than a GPU, were both trained and tested using a machine with 16GB RAM and a
CPU with four cores, each running at 3.6 GHz. The run times for these models were recorded and compared
to better understand the computational cost of each modeling approach.

3. Results and Discussion
3.1. Tuning RF Model Hyperparameters

Figures 4a and 4b show the improvement of MAEs and RMSEs for training and testing data sets and training
time required with an increasing number of trees, respectively. Using GridSearchCV on max_features
values ranging from 1 to 8, it was found that for varying n_estimators between 1 and 300, the best performing
max_features value was 6 invariably. Therefore, max_features = 6 was used to assess RF model sensitivity to
different numbers of trees (1, 10, 50, 100, 200, and 300). For the RF model with more than 50 trees, the
improvement in MAEs and RMSEs was minimal while the required training time increased remarkably.
Therefore, the n_estimators parameter in the RF model was set to 50 for further analysis.

3.2. Flood‐Prone Streets Surrogate Model (RF Model 1)

Figure 5 compares water depth throughout the storm events modeled by both the RF surrogate and
TUFLOW models for the six road segments used to develop the flood‐prone streets surrogate model
(RF Model 1). The MAEs and RMSEs of water depths at these six locations during the testing storm events
are listed in Table 3. During the event on 11 August 2018, the surrogate model accurately matched the simu-
lated time of peak water depth by the TUFLOW model. The peak water depth was overpredicted by RF
Model 1 on five road segments by values ranging between 0.02 and 0.11 m. At Segment 2, the peak value
was underpredicted by 0.011 m. As the storm passed, the surrogate model started to drain water out from
the road surface, similar to the TUFLOW model. MAE and RMSE values for all locations were less than
or equal to 0.042 and 0.061 m, respectively, showing a high predictive skill for the RF model. Predictions
made for the 6 May 2018 event showed that at Segments 1 and 5, the surrogate model started to drain out
the water before the physics‐based model, resulting in higher MAE and RMSE values at those locations of
0.079 and 0.131 m, and 0.144 and 0.202 m, respectively. Although the MAEs and RMSEs are higher at
Segments 1 and 5, the plots demonstrate that the surrogate model approximated the time of peak with good
accuracy overall for the 6 May 2018 storm. Peak values during this event were slightly underpredicted on all
segments, with an average difference of 0.072 m. During the 29 October 2017 event, less water accumulated
on streets according to TUFLOW, which was reflected in the surrogate model output. The surrogate model
overpredicted flood peak by an average of 0.068 m at Segments 1–4 and underpredicted flood peak by
0.036 m at Segments 5 and 6. The 28 May 2018 event had two distinct peaks. From the water depth versus
time plot, it is evident that the RF surrogate was able to identify both the gradual rise in water level on
the streets followed by the recession of water on all road segments. The highest peak during this event

Figure 4. RF model sensitivity to a varying number of trees: (a) MAEs and RMSEs and (b) the training times with
increasing number of trees.
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Figure 5. Water depth on the six road segments of RF Model 1 during the four test events.
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was overpredicted by an average of 0.02 m at Segments 1, 2, and 5 and underpredicted by an average of
0.046 m at Segments 3, 4, and 6. Overall, these results suggested that RF Model 1 was able to learn from
different topographic and environmental information provided to emulate the responses from the 2‐D
physics‐based TUFLOW model. Although the surrogate model showed some deviations from the
TUFLOW model for some segments and events, most often, it was able to estimate the time of peak and
peak water depth successfully with low overall MAE and RMSE of 0.036 and 0.057 m, respectively.
Precision and recall scores used in the second, citywide model (RF Model 2) were not calculated for RF
Model 1 because these metrics are less relevant when comparing only six road segments.

3.3. Citywide Surrogate Model (RF Model 2)
3.3.1. Effect of Sampling Techniques on RF Model Performance
The effect of different sampling techniques on RF Model 2 performance in terms of MAE, RMSE, precision,
and recall is shown in Figure 6. The overall MAE and RMSE of the test data set were largest when the train-
ing data set was used without any modification, and assigned sample weight was “None.” Assigning a sam-
ple weight of two to samples with water depth >0.2 m while fitting the model showed minor improvement.
Maximum improvement in performance in terms of RMSE andMAEwas obtained when the minority group
with water depth ≥0.3 m was oversampled. Similarly, Figure 6b demonstrates that for groups with water
depth >0.2 and >0.3 m, recall values increased by 32% and 57%, respectively, due to oversampling the min-
ority class, while precision value improved by 7% and 3%, respectively. For the water depth >0.1 m group,
precision improved by 10% with minimal improvement in recall value due to oversampling. Overall, over-
sampling the minority class in combination with assigned sample weight showed maximum improvement
in model performance. Therefore, this technique was used for further analysis.
3.3.2. Flood Depth Estimation
Figure 7 compares results from RF Model 2 to both the TUFLOW model and RF Model 1 for the six road
segments with the highest number of flood reports. Flood reports from Waze at these locations are also

Table 3
MAEs (m) and RMSEs (m) of Water Depth for the Four Test Events and the Six Road Segments Used in RF Model 1

Events Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Mean

MAEs (m)
29 Oct 2017 0.021 0.014 0.009 0.013 0.041 0.013 0.018
6 May 2018 0.079 0.026 0.010 0.009 0.144 0.041 0.051
28 May 2018 0.077 0.022 0.011 0.015 0.129 0.041 0.049
11 Aug 2018 0.031 0.010 0.033 0.023 0.042 0.019 0.026

RMSEs (m)
29 Oct 2017 0.035 0.029 0.016 0.024 0.061 0.019 0.031
6 May 2018 0.131 0.060 0.020 0.021 0.202 0.086 0.087
28 May 2018 0.098 0.037 0.026 0.033 0.162 0.062 0.070
11 Aug 2018 0.046 0.014 0.052 0.038 0.061 0.026 0.039

Figure 6. Effect of sampling techniques on RF model performance.
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Figure 7. Comparison between RF Models 1 and 2 predictions and TUFLOW‐simulated water depth on the six most flood‐prone road segments during the four
testing events. Vertical dashed lines represent occurrences of flood reports from Waze.
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shown in the figure for context. Table 4 lists MAEs and RMSEs for RF Model 2 at the six flood‐prone loca-
tions and the average and 90th percentile errors for 16,914 road segments. Comparing Table 3 to Table 4,
MAEs and RMSEs were higher for RF Model 2 predictions, which was to be expected because RF Model 1
was specifically developed for those six locations whereas RF Model 2 learned from the topographic and
environmental data for the 16,914 different road segments. MAE and RMSE differences were relatively
small: no more than 0.047 and 0.084 m across the events and segments with an average of 0.015 m and
0.023 m, respectively. This demonstrated that, while targeted training improved accuracies for the most
flood‐prone streets, a single, citywide model trained on all 16,914 street segments also yielded accurate
results in terms of the decision‐making threshold values. In practice, an ensemble approach may be most
appropriate that combines targeted RFModel 1 for themost flood‐prone streets with RFModel 2 for citywide
coverage to best inform decision makers.

While RF Model 2 produced overall results with low MAEs and RMSEs according to average values in
Table 4, water level peak timing and depths notably differed from the targeted RF Model 1 values. During
the 11 August 2018 event, RF Model 2 predicted the occurrence of the peak water depth 1 hr earlier than
the TUFLOW model at Segments 2–4, potentially due to the significant rainfall at that hour. At Segments
1, 5, and 6, the time of peak predicted by RF Model 2 coincided with that of the TUFLOW simulation.
Peak water depths were overpredicted by RF Model 2 at five segments with the difference between peak
values from RF Model 2 and TUFLOW ranging from 0.006 to 0.14 m, whereas the peak value was underpre-
dicted at Segment 1 by 0.01 m. TUFLOW‐simulated water depths were significantly underpredicted by RF
Model 2 at Segments 1 and 5 with a difference between peak values of 0.115 and 0.171 m, respectively, on
6 May 2018. In addition, RF Model 2 predicted to drain water out of these two segments before the
TUFLOW‐simulated time, resulting in high MAEs and RMSEs. Nevertheless, predicted maxima (Figure 7)
was above 0.30 m, which is sufficient to make decisions about road closures, as discussed in section 2.5.
During the 29 October 2017 event, less water accumulated on Segments 2–4, according to TUFLOW, which

Table 4
Water‐Depth MAEs (m) and RMSEs (m) for the Six Road Segments From RF Model 2, Including Average and 90th Percentile Errors for 16,914 Segments and Four
Test Events

Events Segment 1 Segment 2 Segment 3 Segment 4 Segment 5 Segment 6 Average errors 90th percentile errors

MAEs (m)
29 Oct 2017 0.028 0.026 0.015 0.011 0.065 0.042 0.014 0.023
6 May 2018 0.083 0.031 0.016 0.016 0.153 0.042 0.014 0.025
28 May 2018 0.099 0.023 0.022 0.019 0.124 0.060 0.010 0.019
11 Aug 2018 0.073 0.048 0.066 0.053 0.039 0.066 0.030 0.053

RMSEs (m)
29 Oct 2017 0.034 0.037 0.024 0.019 0.105 0.053 0.026 0.035
6 May 2018 0.135 0.065 0.039 0.037 0.203 0.083 0.038 0.047
28 May 2018 0.118 0.046 0.042 0.043 0.164 0.083 0.029 0.038
11 Aug 2018 0.129 0.078 0.096 0.073 0.054 0.110 0.055 0.079

Figure 8. Histogram of MAE and RMSE between RF Model 2 and the physics‐based TUFLOW model for water depth
predictions at different road segments during test events.
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was reflected in the surrogate model output. At Segments 1, 5, and 6, peak water depths were overpredicted
by RFModel 2, with an average difference of 0.024 m. The two flood peaks simulated by the TUFLOWmodel
on 28 May 2018 were also identified by the RF surrogate models; however, the first peak was overpredicted
by RF Model 2 on all the street segments with an average peak difference of 0.09 m. The second peak during
this event was underpredicted by RF Model 2 on five road segments with an average peak difference of`
0.043 m, whereas an overprediction of 0.04 m occurred at Segment 5.

Crowdsourced flooding observations from the Waze app represent a binary “yes” or “no” value (not a water
depth); however, they can aid in validating occurrences and durations of flooding in the road network. For
example, the flood reports fromWaze on 11 August 2018 (Segments 2, 3, and 6), 6May 2018 (Segment 4), and
28May 2018 (Segment 6) corresponded to periods of significant street flooding. However, the flood report on
11 August 2018 at 7:00 p.m. was made when water completely drained out of Segment 4 according to the
TUFLOW simulation and RF prediction. Importantly, Waze reports should be considered when the pre-
dicted flood times and places from the RF surrogate models differed from the TUFLOWmodel. For example,
three Waze reports were made at 1:00, 2:00, and 3:00 p.m. on 28 May 2018, close to Segment 4. However, the
TUFLOW simulation suggested there was no water on that segment or nearby streets at 2:00 or 3:00 pm on
28 May 2018. On the other hand, the surrogate model predicted a water depth of 0.12 m at 2:00 p.m. for this
event. Additionally, RF‐predicted peak water depth at Segment 4 on 28 May 2018 was higher than the
TUFLOW simulation. The RF model predicted the flooding observed by one or more Waze users, but the
physics‐based TUFLOW model did not.

The performance of RF Model 2 across the 16,914 road segments for the four test events was measured using
MAE and RMSE computed at each road segment. Figure 8 shows histograms of predictive error in water
depth for the four test events with average and 90th percentile MAEs and RMSEs listed in Table 4. The 11
August 2018 event had the highest MAE and RMSE, which is expected because it was the most extreme rain-
fall event in the test data set. Approximately 98% of the road segments had MAEs < 0.084 m and
RMSEs < 0.13 m during this event. For the other three test events, >96% and 1–3% of the locations had
MAEs < 0.05 m and within 0.05–0.10 m range, respectively. For all events, road segments with an
MAE > 0.10 m was <1%. These results suggested that the surrogate model was effectively emulating the

Figure 9. Map showing RMSE between RF Model 2 predicted and the physics‐based model TUFLOW‐simulated
water depth for each road segment during the test events, where possible missing pipes in the TUFLOW model
(A), possible incorrect parameterization of pipes (B), locations where RF Model 2 underpredicted but correctly predicted
above 0.3 m threshold (C), and locations where RF Model 2 overpredicted flood levels (D).
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TUFLOW‐simulated flood depth at most of the street segments in the study domain with low MAEs and
RMSEs.

The use of the RF model as a surrogate might be used as a way to detect places where the TUFLOW model
could be better parameterized or configured. Places where the emulation model consistently performed
poorly might indicate locations where the physics‐based model was behaving anomalously. Machine learn-
ing has long been used for anomaly detection (Lane & Brodley, 1997). Figures 9 and 10 highlight locations
where RF Model 2 did not perform well. Although the number of locations with inaccurate predictions
increased for larger events, clusters of locations existed where the RF surrogate consistently resulted in inac-
curate results for all the events. Upon analyzing RF performance, 133 road segments had RMSEs > 0.2 m
during any of the test events. At 71 of these segments, water drained much more slowly compared to other
similar locations in the model domain. These road segments were analyzed in conjunction with storm sewer
pipe data that were collected from the city of Norfolk (City of Norfolk GIS Bureau, 2018b) to build the
TUFLOW model. Some locations, like the ones labeled “A” in Figures 9 and 10, had no 1‐D storm water
infrastructure in the TUFLOWmodel on streets where we would expect that infrastructure. When we exam-
ined street‐view imagery from Google Maps, we found that there were indeed storm water inlets on the sides
of the roads. The RF model, therefore, brought a potential problem in the physics‐based model to our atten-
tion, and with some investigation, we were able to confirm that indeed the TUFLOW model was missing
some information that is in the physical system.

Another group of locations that drained unusually slow (compared to the rest of the TUFLOW model) had
1‐D storm water infrastructure represented at those locations (labeled “B” in Figures 9 and 10). Because the
water drainage was slower at these locations than the rest of the model, and no indications of flooding from
the WAZE data, we suspected that the 1‐D storm water infrastructure might be incorrectly parameterized
in the TUFLOW model at or near these locations. Investigating the pipe information at these locations, we
found that the downstream invert levels of these pipes were higher than the upstream invert levels, which
prohibited flow through these pipes in TUFLOW simulation. Future work conducting field surveys or
deploying water level sensors to detect water depth during storm events at those locations would help to
verify further and better understand what is occurring at these locations.

In addition to locations that were consistently and unusually slow to drain, there were another 50 locations
that had high RMSE. At these locations, peak water depths during the storm events were simulated between

Figure 10. Locations with RMSE > 0.2 m and pipe network from the city of Norfolk. (A) indicates areas where there are possible missing pipes in the TUFLOW
model while (B) indicates areas where there is possible incorrect parameterization of the pipes.
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0.6 to 1.5 m by the TUFLOW model. Although the RF model also predicted high water depths, they were
always smaller than the TUFLOW peak values, resulting in high RMSE. However, at 41 (e.g., labeled “C”
in Figure 9) out of these 50 locations, RF Model 2 predicted water depths near or higher than the 0.30 m
threshold, which is sufficient to make road closure decisions. RF Model 2 predicted peak water depths at
the other nine locations were below 0.30 m.

At the remaining 12 locations with high RMSE, RFModel 2 overpredicted the peak water depth compared to
the TUFLOW simulation. At these 12 locations (e.g., labeled “D” in Figure 9), RF Model 2 predicted peak
water depth ranged between 0.50 and 0.75 m on the 11 August 2018 event, while the water depth from
TUFLOW simulation was zero or smaller than 0.10 m. Analyzing the topographic features at these locations
showed that TWI values were above 7.46. The original training data set had only 8% samples with
TWI > 7.46, and 80% of these locations had TUFLOW‐simulated peak water depth >0.10 m on 11 August
2018 event. On the contrary, 58% of the locations with TWI < 7.46 had TUFLOW‐simulated peak water
depth >0.10 m. As higher TWI indicates higher runoff accumulation, we suspected RF Model 2 overpre-
dicted the flood depth due to high TWI values at these 12 locations.
3.3.3. Inundation Extent and Hazard Mapping
Figures 11 and 12 show the precision, recall, and F1 score time series throughout the test storm events for
threshold values 0.10, 0.20, and 0.30 m of water depth, along with the hourly precipitation averaged across
all rainfall stations in the study area. These time series reflect the performance of RF Model 2 throughout
each storm event. Table 5 shows the average precision, recall, and F1 scores for the 3 hr with maximum

Figure 11. Time series plot of precision, recall, and F1 scores for threshold values 0.10, 0.20, and 0.30 m on 11 August
2018 and 6 May 2018 events. The dashed rectangle represents the 3 hr period with maximum volumes of water on the
streets simulated by TUFLOW.
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inundation volume according to TUFLOW simulation during the four test events. Figure 13 shows map‐
based views comparing water depth estimates from RF Model 2 and TUFLOW model for the 3 hr with
maximum inundation volume during the 11 August 2018 event, along with flood reports from Waze.

Figure 11 shows that, during the initial hours of the storm events on 11 August 2018 and 6 May 2018, the
precision, recall, and F1 scores were low. These hours corresponded to lowwater volume on the streets simu-
lated by the TUFLOW model. However, with increasing hourly rainfall and cumulative rainfall in the pre-
vious hours, these scores gradually increased to satisfactory values. The F1 scores reached values above
0.85 for all the thresholds by the end of the 3 hr with maximum water volume on the 11 August 2018 event.
Similarly, the 6 May 2018 event showed significant improvement in F1 scores during hours corresponding to
maximum water volume. The 29 October 2017 event demonstrated a decrease in the F1 score curve during
the reduced rainfall period. However, the average F1 scores were maintained to be >0.84 during the 3 hr of
maximumwater volume for the three threshold values. Although the F1 scores for the event on 28May 2018
event declined during the period with maximum flood volume, the average value remained >0.80.

Table 5 shows that precision, recall, and F1 scores for water depths ≥0.1 m were high for the test storm
events. Three out of the four test events had precision scores greater than 0.90, indicating more than 90%
of the RF‐predicted flooded road segments matched with TUFLOW‐simulated flooded segments correctly.
With increasing flood depth, the precision scores were consistently higher than 0.90 for these three events.
The storm event on 11 August 2018 had the lowest precision score among the four storm events; however, it
maintained a score higher than 0.70 for different flood depths. Figure 13 demonstrates that at 4:00 pm during

Figure 12. Time series plot of precision, recall, and F1 scores for threshold values 0.10, 0.20, and 0.30 m on 29 October
2017, and 28 May 2018 events. The dashed rectangle represents the 3 hr period with maximum volumes of water on the
streets simulated by TUFLOW.
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the storm event, which was also the hour with the highest flood volume, RF Model 2 overpredicted flooding
in many locations, decreasing the precision value. The precision scores found in this study for water depths
≥0.1 m were within the range 0.19 to 0.97, which was also found in the study done by Bermúdez et al. (2018)
and, therefore, could be considered acceptable scores.

In terms of recall, three out of the four test events had scores above 0.90 for water depths ≥0.1 m indicating
more than 90% of the TUFLOW‐simulated flooded streets defining the flood boundary were correctly pre-
dicted by RF Model 2. The storm event on 6 May 2018 had a recall score of 0.74, which was the lowest for
water depth ≥0.1 m among the four test events. The recall scores found in this study for water depths
≥0.1 m were within the range 0.40 to 0.99, which are similar to those found in the study done by
Bermúdez et al. (2018). For all four test events, recall decreased with increasing water depth. As discussed
earlier in section 3.3.1, the data set used in this study was highly imbalanced. Oversampling was done on
minority class with water depth ≥0.3 m to make the data set balanced, which notably improved overall pre-
cision and recall scores. However, the recall score for depth ≥0.3 m on the 6 May 2018 event was found to be

Table 5
Precision, Recall, and F1 Score for the 3 hr With Maximum Flood Volume During the Test Storm Events

Depth ≥ 0.1 m Depth ≥ 0.2 m Depth ≥ 0.3 m

Events Recall Precision F1 score Recall Precision F1 score Recall Precision F1 score

29 Oct 2017 0.94 0.94 0.94 0.81 0.93 0.87 0.79 0.90 0.84
6 May 2018 0.74 0.90 0.81 0.45 0.95 0.59 0.39 0.98 0.55
28 May 2018 0.92 0.92 0.92 0.77 0.96 0.85 0.71 0.96 0.81
11 Aug 2018 0.90 0.78 0.84 0.66 0.73 0.70 0.60 0.70 0.63

Figure 13. Comparison between inundation and hazard mapping by TUFLOW and RF Model 2 along with flood reports
from Waze on 11 August 2018.
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0.39, which might indicate that the oversampling ratio of the minor class
with water depth ≥0.3 m used in this study was not sufficient. In future
research, oversampling the other minor class with water depth range
0.2–0.3 m and trying different oversampling ratios for the minority classes
might help to improve recall scores further. Another approach to obtain a
balanced data set is stratification, which could also be explored in future
research. The performance of RF classification could also be further ana-
lyzed instead of using regression to increase precision and recall. Initial
testing of RF classification with class_weight parameter as “balanced” in
sklearn.RandomForestClassifier showed an increase in overall recall
scores for water depths ≥0.2 m and ≥0.3 m, but a decrease for depths
≥0.1 m compared to RF regression.

Although recall decreased with increasing water depths, precision main-
tained high values regardless of water depth. This implies that the surro-
gate model underpredicted flooding, which might help to avoid

unnecessary actions in nonflood locations but might miss some critical flooding impacts. Further exploring
ways to balance the training data by oversampling minority class beyond what was tested in this study could
further improve recall scores. However, due to the fundamental trade‐off between precision and recall,
increasing the recall values would likely result in a decrease in precision (Buckland & Gey, 1994; de
Bruijn et al., 2017). Finding a balance between these two metrics would require understanding a decision
maker's preference in either avoiding unnecessary actions or correctly identifying most of the flood loca-
tions, even if that may result in action taken in nonflooded locations.
3.3.4. Feature Importance
Feature importances fromRFModel 2 are shown in Figure 14. The importance of each input feature is a rela-
tive measure calculated by RF based on how significantly the mean accuracy decreases if the feature was
omitted. The three topographic features, TWI, elevation, and DTW, were found to be themost important fea-
tures. TWI helped to explain pluvial flooding because it indicated the tendency of a pixel to receive and
retain water from upstream. DTW represented the elevation difference between the land surface and nearest
surface water features, so it likely accounted for flooding in tidally influenced areas. Because TWI and DTW
were derived using the DEM, the impact to model results where elevation was excluded as a feature was
explored. Doing this increased the averageMAE by between 12% and 67% for the four test events, which sup-
ported including elevation in the RF model, despite its relation to TWI and DTW.

Among the environmental features, rainfall in the previous 72 and 2 hr were found to be more important
than hourly rainfall, maximum 15 min rainfall, and tide level. This suggested that the RF surrogate gave
more importance to antecedent moisture content and available capacity of storm water systems from prior
rainfall occurrence compared to the more immediate rainfall for flood approximation. Investments in rain-
fall and soil moisture sensors within the city, therefore, could help to confirm real‐time flooding impacts.
Hourly tide level was the least important feature, although it was anticipated to play an important role given
Norfolk's proximity to the coast and its low elevation. Surprisingly, omitting tide level from training reduced
average MAE by between 0.13% (.00005 m) and 5.7% (.001 m) for the different test events. Because the
improvement in MAE is a small number, and the hourly tide is one of the inputs for the TUFLOW model,
this feature was not discarded from the analysis.
3.3.5. Computational Cost
Table 6 compares computational costs and run times of RF Model 2 to the TUFLOW model. The TUFLOW
model simulated each storm event using two GPUs, which required approximately 4.5 to 6 hr of run time

Figure 14. Importance of input features to RF Model 2.

Table 6
Comparison Between the Machines Used and Computational Time for TUFLOW and RF Model 2

Model name RAM CPU GPU info Run time

TUFLOW 64 GB 4.4 GHz, 4 cores Dual NVIDIA(R) GeForce(R) Titan X with 12GB GDDR5X each 4.5–6 hr
RF surrogate 16 GB 3.6 GHz, 4 cores — Training: ~56 min

Testing: 6 s
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depending on the event duration. Using a CPU would most likely take more than 120 hr to simulate each
event using the TUFLOW model (Morsy et al., 2018). In contrast, RF Model 2 required approximately
56 min to train using 16 events with a total of 375 hr of data, and it took only approximately 6 s to make pre-
dictions for a single event using the trained model. In addition, these times were for a computer with 16 GB
of RAM and using a CPU rather than a GPU. This showed how the RF surrogate model would significantly
reduce the computational cost for real‐time flood management applications. It also sped up the simulation
by a factor of around 3,000, which came with an arguably acceptable loss in accuracy, depending on the spe-
cifics of the decisions being made based on the modeling output. RF Model 2 could be trained using output
from the physics‐based model off‐line before storms occur. Then, during storm events, RF Model 2 could be
run in real time with a speedup from the physics‐based model of 3,000 times.

3.4. Approach Limitations and Future Work

A major limitation of this study was the lack of observational water depth data on streets during storm
events. Hence, it was presumed that the TUFLOW model was a ground truth, which might not always be
the case as the Waze data suggested. A monitoring solution able to measure water depths on streets could
be used to assess flood models better; however, such systems are rare, especially at a citywide scale.
Although there are uncertainties and challenges associated with using crowdsourced data (Boutsis
et al., 2016), crowdsourced data such as Waze are useful as an additional resource to validate street flood
models, as shown in this study. Waze data are being used for other transportation‐related assessments
and decision making. For example, the U.S. Department of Transportation has been using Waze data for
crash reporting and to enhance the predictive capability of crash models (Flynn et al., 2018).

Another major limitation of this study was the outdated underground pipe network data, which was last
updated in 2000 by the city of Norfolk. As discussed in section 3.3.2, pipe network information was not avail-
able for some streets in the TUFLOW model, causing accumulation of water on the roadways. In addition,
some of the pipes had higher downstream elevation compared to the upstream inlet, prohibiting water from
draining out of the streets. Because a survey on the underground pipe network is costly, it makes the correc-
tion of the TUFLOW model at these problem spots difficult.

This study mainly focused on emulating the water depths on streets from the 1‐D/2‐D hydrodynamic model
TUFLOW for real‐time flood prediction. However, hydrodynamic models can simulate flooding both inside
and outside urban streets. Future research could be performed to expand the flood prediction using the RF
surrogate model outside the roads. An important feature to determine themagnitude of urban flooding is the
available capacity of the drainage system. Due to the lack of data regarding initial conditions of the drainage
infrustructure, rainfall data during the previous 2 and 72 hr were used as features to account for available
storm water system capacity. It was assumed that the occurrence of rainfall in previous hours would reduce
drainage system capacity, increasing the possibility of flooding with further rainfall. Also, in coastal cities,
tide levels might interfere with the drainage capacity. Future studies should explore how drainage system
capacity can be used directly as a feature in the RF model while considering impacts from both rainfall
and tide levels.

While this work focused on urban coastal communities, the results could also be applied to other domains
such as inland urban communities and low‐relief rural communities that have complex hydrodynamics
requiring computationally expensive 1‐D/2‐D physics‐based models for street flood predictions. RF models
would need to be retrained for these new application areas; however, this study did not explore the ability of
an RF model to be applied to a new domain. Also, this study focused on an event‐based sampling of training
and testing data sets. Future studies might conduct a nonevent‐based selection by choosing random time
steps across all the events instead of partitioning training and testing by discrete rainfall events.

4. Conclusions

Machine learning models were developed using an RF algorithm to emulate results from the physics‐based
1‐D pipe/2‐D overland model TUFLOW, which was built for a large portion of the coastal city of Norfolk,
VA, USA. The RF surrogate models were trained to find patterns between topographic (TWI, DTW, and ele-
vation) and environmental (rainfall and tide) features of roadways and water depths on streets simulated by
the TUFLOW model for different storm events. Two different model training strategies were explored: (i)
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training and testing using only the six most flood‐prone street segments (referred to as RF Model 1) and (ii)
training and testing across all of the 16,914 street segments in the nearly citywide data set (referred to as RF
Model 2). The MAEs and RMSEs between water level predictions on street segments made by the RF surro-
gate models and TUFLOW simulations were calculated for both training strategies. In addition, precision,
recall, and F1 score statistics were calculated to assess the performance of RFModel 2 in estimating the inun-
dation extents simulated by the physics‐based model.

Results showed a good predictive skill for both modeling scenarios. For RF Model 1, the averaged MAE and
RMSE across the six flood‐prone segments and four test events were 0.036 and 0.057 m, respectively, which
increased by 0.015 and 0.023 m, respectively, for RF Model 2. For RF Model 2, the average and 90th percen-
tile MAE varied between 0.012–0.039 m and 0.022–0.067 m, respectively, across the four test flooding events.
The results of this comparison showed that the focused training approach produced a more accurate surro-
gatemodel for the flood‐prone streets compared to the citywide RFModel 2, as expected, but RFModel 2 also
performed well. Thus, we recommend an ensemble approach where RF models are built and trained for dif-
ferent collections of streets to produce the most accurate information to support decision makers for real‐
time management during flooding events. Furthermore, the results of the analysis showed that topographic
features were more important compared to the environmental features in approximating water depths in the
RF model. Among environmental features, cumulative rainfall over the previous 72 hr, representing antece-
dent moisture conditions, was the most important variable for predicting water depths on roads.

Due to a disproportionate number of streets with high water levels in the physics‐based model compared to
streets with little or no ponded water, the citywide RF Model 2 scenario tended to underestimate the water
level. Efforts were made to balance the training data set, which did improve prediction results, although
future research could further improve training strategies and address the imbalance. High precision
(78–94%) and recall (74–94%) were obtained with a water depth threshold ≥0.10 m for all of the test events.
However, increasing the threshold value to ≥0.30 m decreased recall (39–79%), while precision continued to
be high (70–98%).

The major benefits of and motivations for using the RF surrogate models are their potential to reduce the
computational time required while approximating the responses from the physics‐based model with a suffi-
cient level of accuracy to support decision makers. For real‐time and forecast decision support, the computa-
tional demands of a detailed, 1‐D/2‐D physics‐based model able to simulate street‐scale water levels within
an urban environment in real time is impractical if not impossible. RF model 2 had a 3,000 times speedup in
run time compared to TUFLOW and did not require expensive hardware, like the dual GPUs used to run
TUFLOW. This opens the door to real‐time citywide flood forecasting capabilities at the street scale for urban
communities without requiring access to powerful GPU workstations.

Lastly, an initial investigation of areas within the study domain where the RF surrogate model did not match
simulations within the physics‐based model suggested that some of these discrepancies could have resulted
from problems in the physics‐based model rather than problems in the RF model. For example, we found
evidence to suggest missing stormwater drainage infrastructure data for portions of the physics‐basedmodel
domain that may explain unexpected water level predictions within these areas. Additional research, includ-
ing data verification, field data collection, and model simulations, is needed to explore this finding more
fully. Nevertheless, our research indicated that machine learning models like RF could be used as an
approach to check physics‐based models and identify potential problem spots that require additional atten-
tion and focus.
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