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Abstract—This paper presents the ROS F1/10 simulator
- a ROS and Gazebo based autonomous racing simula-
tor designed to mirror the behaviour and performance
of the physical F1/10 platform. The simulator can be
used to verify the performance of autonomous racing
algorithms before testing on the real F1/10 racecar. The
simulator supports most major ROS SLAM and navigation
packages with tutorials on how to get started available
on www.f1tenth.dev under open-source license and we
continue to add support for more algorithms and features.
The paper presents details on the simulator architecture,
design, and features and presents several research use-
cases including an example of developing in the sim and
transferring the performance to the race racecar.

I. INTRODUCTION

The F1/10 autonomous platform is a fully autonomous
Ackermann-steering racing robot inspired by Formulae
1 (F1). It is one-tenth the scale of a full scale racecar.
The F1/10 platform [1] is designed to make autonomy
easily accessible, and it is fully capable of implementing
the entire perception, planning & control pipeline using
on-board components in real-time. The F1/10 platform
project is open-source and made available on f1tenth.org.
The F1/10 racecar is highly modular and is built on top
of a realistic one-tenth scaled Traxxas Rally car chassis
with a four-wheel drive brushless power train capable of
rapid acceleration and fast cornering. The F1/10 racecar
can be equipped with a varying sensor suite with a 2D
scanning LiDAR as the primary navigation sensor and
secondary sensors include Inertial Measurement Units
(IMU), RGB cameras and 3D stereo depth cameras.
The sensing and actuating components are controlled
using an powerful onboard embedded computer (usually
the NVIDIA Jetson TX2) with Robot Operating System
(ROS) and associated packages as the default robot con-
trol software. The F1/10 platform has enabled research in
robotics, machine learning, cyber-physical systems, and
embedded systems across multiple research group and
universities in the world [2]–[9].
Figure 1 provides an overview of the F1/10 simulator,
and the project is made available at www.f1tenth.dev The
F1/10 racecar makes vehicular autonomy easily accessi-

Fig. 1: Overview of F1/10 simulator - an autonomous racing simulator
based on ROS. It is highly modular in terms of sensors and capabilities,
works with most major ROS SLAM and navigation packages, and it
is currently being used for research by major research universities

ble, and there is a lot of interest in the F1/10 racecar from
students & researchers, but the slightly higher price tag
(US$3000-4500) depending on the sensor configuration
(e.g. high speed and range LIDAR), makes the physical
platform still outside the reach of many researchers.
In addition, sourcing all the parts to build the car has
recently become a major hassle. The lack of a dedicated
F1/10 simulator also makes the algorithm development
cycle longer and ad-hoc, since the only way to test the
racing algorithms is to implement them on the physical
car. The ROS F1/10 simulator is designed to address
these limitations of the F1/10 platform. The primary
contributions of this paper are:

1) A ROS F1/10 simulator developed in Gazebo that
is designed to mirror the performance and behavior
of a real F1/10 autonomous racecar.

2) The simulator supports an extensive suite of per-
ception, planning, and control research algorithms
and provides roslaunch scripts to make them
easy to implement.

3) We demonstrate the fidelity of our simulator by
showing how one can transfer algorithms designed
in simulation to the real F1/10 with ease.

f1tenth.org
www.f1tenth.dev
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Fig. 2: The architecture of F1/10 simulator simulator [Left] front end with the ROS Python API and high level algorithmic parameters, desired
racing behavior and a control plugin (with a command multiplexer to prioritize the desired navigation stacks), and the Xacro vehicle description,
[Center] the ROS based functional block with feed forward and feed back mechanisms with the controller manager providing synchronization
services, [Right] the simulator back end consisting of Gazebo, the racing environment, telemetry services and the visualization tools

II. RELATED WORK

The core of the F1/10 simulator is ROS [10] and
Gazebo [11] and their extensive list of supported li-
braries, and as such heavily borrows the design principles
of those projects. Apart from the simulator and its back
end components, the F10/10 simulator supports racing
metrics and strategies employed in popular motor sports
like Formulae 1, Indianapolis 500 etc. using a dedicated
telemetry system. While there are many autonomous
vehicle simulators available like Carla, Apollo, etc. and
they can theoretically be used to test racing algorithms,
that was never their primary purpose, and as such
impose lots of barriers when testing high speed navi-
gation and obstacle avoidance. Simulators like Apollo
were not designed for autonomous racing, but rather for
testing autonomous vehicles in an urban environment
or interstate highways. Simulators like Carla [12] are
open-source and relatively lightweight, but still focused
on autonomous driving research in similar settings as
Apollo. Autonomous racing differs from autonomous
driving in certain key areas like higher speeds, lack of
minimum safe following distance & lack of lanes, etc.
The main limitations of the simulators above is the lack
of a one-to-one correspondence with a physical testbed.
The Amazon DeepRacer [13] is a similar but less capable
hardware platform compared to the F1/10 racecar. It also
has a simulated environment, but the entire DeepRacer
platform is focused mostly on enabling Reinforcement

Learning (RL). The DeepRacer is also a standalone
platform with no out-of-box support for multi-vehicle
operation. In addition to the complexity of the simulators
themselves, the threshold to get started is very high both
in terms of computer hardware and experience, and this
is where F1/10 simulator tries to fill in the gap - by
being a lightweight autonomous racing simulator and
providing an easy to learn Python API, F1/10 simulator
make vehicular autonomy easily accessible. The virtual
racecar in F1/10 simulator is based on the specifications
designed by the ROS Ackermann Interest Group, and
depends on the GPU enabled fast particle filter [14].

III. SIMULATOR ARCHITECTURE

The F1/10 simulator has been built around the design
principles of modularity and expandibility, and is based
entirely on the open-source projects of Robot Operating
System (ROS) and Gazebo physics simulator. The sim-
ulator architecture is contains three modules: simulation
front end, functional-block and simulation back end.

A. Virtual Racecar

The virtual racecar in the F1/10 simulator is a col-
lection of visual and functional components joined at
a constant offset to a geometric tracking frame that
simulates the sensing and performance capabilities of
the F1/10 autonomous racecar platform. It is described
using a single XML macros module and is designed to
be highly modular with Boolean flags that can set or



reset all functional components of the virtual racecar.
The components of the virtual racecar are divided into
the following three sections, Figure 3 shows the features
of the virtual racecar derived from the real F1/10 racecar:

Fig. 3: Clockwise from top left - The real F1/10 racecar; the virtual
F1/10 racecar as seen on the Gazebo GUI; the modular sensor suite
with 2D LiDAR & stereo camera; the 4-wheel virtual drive train

1) Virtual Sensing Components: The F1/10 virtual race-
car is equipped with a wide variety of sensors including
2D laser scanners, monocular and stereo RGBD (RGB
+ depth) cameras, IMUs (Inertial Measurement Units),
rotational encoders and contact sensors. The sensors
output a raw ROS standard message type and the sim-
ulator uses sensor filters to provide accurate estimates
of the pose and velocity information of the virtual race-
car using the ROS robot pose EKF (Extended Kalman
Filter) [15] [16].
2) Virtual Actuation Components: The F1/10 virtual
racecar contains six independent actuators with a gov-
erning Ackermann-steering vehicle controller. Four of
the actuators are PID enabled torque controllers and
the other two are PID steering hinge angle con-
trollers [17]. The actuation control nodes can accept
ROS Twist or AckermannDrive type input and enforces
strict Ackermann-steering geometry constraints and the
resulting differential wheel torque constraints.
3) Modular Components: Each component in the F1/10
virtual racecar can be enabled or disabled according to
user needs. Amongst the sensor suite, the XML macros
module describing the sensor and its operation consists
of a Boolean flag to enable/disable that particular sensor,
and amongst the actuation suite - the virtual racecar
can be converted from four-wheel drive to two-wheel
(front axle or rear axle) and the torque differential
drive components can be enabled or disabled using the
accompanying Boolean flag.

B. Simulator Front-End

The simulator front-end is divided into the F1/10 specific
ROS Python API and the racecar description Xacros
(XML Macros). The ROS Python API is used to per-
form the ROS publish and subscribe functions along
with maintaining the ROS parameters server and ROS

services, while the racecar description Xacros are used
to determine the functional and visual parameters of the
virtual racecar and its components.
1) ROS Python API: These are a set of ROS Python
nodes that are used to communicate with the virtual
racecar and perform a variety of functions including re-
mote tele-operation using keyboard/joystick, read sensor
data from the virtual racecar and publish the actuation
commands from a higher level navigation stack. The API
also enforces actuation constraints like steering wheel
velocity and final drive wheel RPMs using realistic PID
controllers, a collision avoidance node that helps protect
the virtual racecar, and a base footprint projection
node that informs any high level navigation about the
vehicle’s non-zero geometric footprint.
2) Racecar Xacros: These are a set of XML Macros as
defined in ROS that encode the functional components
of the virtual racecar including (a) sensors: LiDAR,
stereo camera, contact sensors and rotational encoders,
and (b) actuators: torque controllers, position and joint
controller, and steering hinge controllers, and also the
visual or aesthetic components of the racecar like the
shape and size of the racecar chassis, sensors and wheels.
The entire virtual racecar has one unique identifiable ge-
ometric frame called its base link and all components of
the racecar are tethered to this link with finite geometric
offsets. For ease of use with the higher level navigation
stacks, the base link is located at the geometric center
of the rear drive-axle of the virtual racecar according to
Ackermann-steering design [18].

C. Functional Block
The functional block module of the simulator is where
most of the ROS based functions reside, the most im-
portant of which is the controller manager. In addition to
the controller manager, the feed-forward control mecha-
nisms (including navigation) and feed-back mechanisms
(including state estimation filters) work in tandem to
ensure the synchronization of the virtual racecars’ com-
mand & control nodes.
1) Controller Manager: The controller manager is a
ROS package used to enforce hard real-time constraints
to the virtual racecar, and it ensures that the timing
mechanisms governing the sensors and actuators control
loops work synchronously. Within the F1/10 simulator,
each racecar is equipped with an independent controller
manager which further acts as a single point of syn-
chronous command & control governor for each racecar.
2) Feed-Forward Mechanism: The feed-forward mech-
anism of the simulator is the section of the functional
block that act as the navigation and control ROS nodes
responsible for guiding the virtual racecar using a desired
approach. High level navigation stacks are deployed
in the feed-forward mechanism section along with the



Example Racetrack with 8 Virtual F1/10 cars

Fig. 4: [Top Left] The Gazebo GUI of the F1/10 simulator autonomous racing simulator showing multiple independent racecars.

default ROS navigation, Simultaneous Localization and
Mapping (SLAM) [19] packages and robot-specific path
planners like the TEB local planner [20].
3) Feed-Back mechanisms: The feed-back mechanism
includes the state estimation nodes of the virtual racecar
including the ego vehicle odometry calculator and oppo-
nent vehicle position and velocity estimation using ROS
native linear and quadratic estimation filters.
Data generated using the feed-back mechanism is pro-
vided to the high level navigation navigation stack syn-
chronously using the rate set by the controller-manager.

D. Simulation Back-End

1) Gazebo Physics Simulator: The open-source Gazebo
physics is the mainstay of the F1/10 simulator and forms
the majority of the back-end block. Gazebo was chosen
for its high physics fidelity and seamless integration
with ROS. The back-end physics simulator itself has two
major functional blocks along with its primary purpose
of simulating the vehicle physics:

• Virtual Race-Track
The virtual race-track in the F1/10 simulator was
carefully designed using CAD to represent a real
race-track with equal assortments of sharp turns and
straight stretches to allow testing a virtual racecar
to its algorithmic limits.

• Racing Metrics Telemetry
Each virtual racecar has an independent timing
and tracking system that provides racing metrics

telemetry like lap time, average lap speed and
waypoint pose that are saved for every lap executed
by the virtual racecar, and can be used to test the
performance difference between racing algorithms.

A custom racetrack can be used in the F1/10 simulator
by modifying the path to the 3D mesh in the world de-
scription file and changing the ground plane dimensions.
2) F1/10 rviz Visualizer: The F1/10 simulator is re-
leased with a set of rviz configuration files and associated
ROS launch visualization nodes that aid in tracking a
single virtual racecar as it traverses a virtual race track,
providing critical visual information such as viewing the
LiDAR data, the RGB camera data and IMU data etc.,
along with estimated and predicted data like the vehicle’s
instantaneous odometry and immediate goal pose.

IV. MULTIPLE AUTONOMOUS RACECARS

Figure 4 shows one of the unique features of the F1/10
simulator, which is the ability to independently spawn
& control multiple virtual racecars (up to 16 racecars).
This is achieved by leveraging the modular design of the
virtual racecar and ROS name spaces. Autonomous rac-
ing also requires the ability of identifying and tracking
the other autonomous agents in the race-track. Finally,
the F1/10 simulator also provides a telemetry system to
track the racing metrics of the virtual racecar.

A. ROS Namespace Delineation
Each virtual racecar is spawned under a unique ROS
compliant string name space which eliminates unautho-



rized cross communication between multiple racecars.
Name spaces also help eliminate concerns about some
sensors (LiDARs, encoders, etc.) and actuators (torque
controllers etc.) that have similar names across all virtual
racecars, by forcing each component to publish and
subscribe to the vehicles unique name space. The F1/10
simulator also maintains a set of global resources that are
shared amongst all virtual racecars including global tf -
frames [21] and navigation stack parameters including
vehicle footprint and performance bounds.

Fig. 5: The rqt graph of three virtual racecars showing independent
geometric frames (like base link and laser link etc.) under vehicle
namespace and common geometric frames (like map and odom)

B. State Exchange Server

We have implemented a state exchange server that
provides state estimation of other autonomous agents
present in the race-track. This becomes especially nec-
essary when addressing research questions such as dy-
namic obstacle avoidance autonomous overtaking. The
F1/10 simulator can also estimate ego state for the
purpose of measuring racing metrics.
1) Racecar State Estimation: Using ROS native linear
and quadratic estimation techniques like EKF [16] and
AdaptiveMonteCarloLocalization(AMCL) [22], the
F1/10 simulator is capable of identifying and track-
ing other autonomous agents in the race-track. To
identify other autonomous agents, the ego vehicles
scanmatcher-frame [23] from ROS Hector SLAM is
employed to look for localized changes between two
successive LiDAR scans and track the velocity of the
changing cluster - providing information regarding pose
and speed of a moving object in the LiDAR Field of
View (FOV).
2) Racing Metrics: The F1/10 simulator is an au-
tonomous racing simulator, and as such has the ability
to measure racing metrics including lap time: the time
taken by the virtual racecar to traverse the race-track
completely, lap speed: the average speed of the virtual
racecar during the lap and the highest & lowest instanta-
neous speeds, and lap waypoints: the actual path taken
by the virtual racecar when traversing the lap.

C. V2V & V2X Communication
Each virtual racecar in the F1/10 simulator is equipped
with the ability to communicate with a central node or
with other virtual racecars. The communication stan-
dards can be described using an XML module and indi-
vidual Vehicle2Vehicle (V2V) and Vehicle2Everything
(V2X) communications can be enabled or disabled on
the fly. The F1/10 simulator uses an overarching Oracle
(observation node) to control inbound and outbound
communication using F1/10 specific UDP packets.

V. RESEARCH ENABLED

The F1/10 simulator can be used to verify autonomous
racing algorithms before implementing them on the real
racecar. An online version is also being used for research
and instruction into autonomy.

A. Sim2Real Pipeline
The F1/10 simulator is built to replicate the behavior
& performance of the real F1/10 racecar, at most times
mirroring the exact behavior of the real racecar, and is
thus used to test & verify the performance of navigation
algorithms. We provide an example for how the F1/10
simulator can be used to develop algorithm in simulation
and how to translate that to results on the real testbed,
thereby advancing the rapid development cycle. The
following steps describe how the simulator was used to
assign optimal lookahead distance for high speed pure-
pursuit [24].
Fig. 6 provides an overview of the experiment workflow
which includes the following sequential steps:

• Mapping the Race Track: The F1/10 racecar
is manually driven around the race track to ob-
tain an 2D occupancy grid map using the Hector
SLAM [25] algorithm

• ROSMap2Gazebo: Using CAD, we extrude the
map bounds by using a smoothing filter to filter
out noises from the map point cloud and export the
resulting 3D mesh to Gazebo as a world model.

• Label Assignment: The label assignment algorithm
is run on the virtual race track in Gazebo. The
lookahead list is set to the desired values.

• Validation on Testbed: The labels generated from
the algorithm are exported to the F1/10 testbed and
verified against simulation results.

In doing so, we can quickly go from a real racetrack, to
a real map, to a 3D simulated racetrack and back to the
real F1/10 testbed as described in Figure 6.

B. Research Enabled
Most of the research into autonomous racing algorithms
enabled using F1/10 simulator are similar to those of the
real F1/10 racecar, and can be broadly divided into the
following two major categories:



Fig. 6: An example of the Sim2Real used in Adaptive Lookahead Pure-Pursuit: Clockwise from Top Left: The F1/10 platform is manually driven
around the race track to create a ROS map using traditional SLAM, the ROS map is exported to CAD where the map bounds are extruded
and exported as a 3D mesh, the label assignment algorithm is performed on the new map using the set simulation parameters, & the labels are
exported to be validated on the F1/10 platform

F1/10 Simulator Research Features

Perception
LiDAR Scanmatcher [23], GPU Particle Filter [14]
Visual Inertial Odometry [26]
Ex: roslaunch f1tenth-sim localization.launch

Mapping
Hector SLAM [25], Gmapping [27]
Google Cartographer [28]
Ex: roslaunch f1tenth-sim mapping.launch

Navigation
Pure-Pursuit [24], ROS Navigation
TEB Local Planner [20]
Ex: roslaunch f1tenth-sim pure pursuit.launch

TABLE I: Research enabled by the F1/10 simulator across disciplines:
perception, planning and control, with accompanying easy to start
launch commands (included with the simulator tutorial package)

1) Open-Loop Navigation: Algorithms in this cate-
gory include Vector Field Histogram (VFH) [29] ob-
stacle avoidance and dynamic window Follow the Gap
(FTG) [30]. Optimizing the algorithms for high speeds
requires significant tuning - which is made easy using the
F1/10 simulator and the Sim2Real pipeline, and different
speeds can be tested without worrying about collisions
& damage to the real F1/10 racecar.
2) Closed-Loop Navigation: Pure-pursuit is a popular
racing strategy that depends on a known map of the
racetrack and highly accurate localization of the racecar
pose & odometry information. The F1/10 simulator has
been used to build on the advantages of the pure-pursuit
by introducing a adaptive & variable lookahead distance
that is optimal for a given stretch of the racetrack. The

simulator supports autonomous racing using adaptive
lookahead pure-pursuit & Timed Elastic Band (TEB)
local planner plugin to base ROS navigation stack.

C. Classroom Instruction
The F1/10 simulator was scaled up and deployed on
a GPU server at the University of Virginia to provide
access to a total of 8 teams, each with an independent
virtual racecar and dedicated workspace. Algorithms
included wall-following, vector field histogram, follow
the gap and Hector SLAM etc.

VI. CONCLUSION & FUTURE WORK

This paper presents F1/10 simulator - an open-source
ROS & Gazebo based autonomous racing simulator
modelled around the F1/10 autonomous racecar platform
with an emphasis on modularity and ease of use. The
simulator is currently being used for research into au-
tonomous racing algorithms & as a tool of instruction
for vehicular autonomy at major research universities.
The project is released to the public and is currently
maintained by the authors and other members of the
community. The F1/10 simulator project will continue to
be supported well into the future and upcoming releases
include integrating machine learning libraries (including
reinforcement learning) through dedicated APIs.
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