
Bèzier Curve Based End-to-End Trajectory Synthesis
for Agile Autonomous Driving

Trent Weiss, Varundev Suresh Babu, and Madhur Behl
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

{ttw2xk, varundev, madhur.behl }@virginia.edu

Abstract

Demonstrating high-speed autonomous racing can be considered as a grand chal-1

lenge for vision based end-to-end deep learning models. DeepRacing AI is a2

novel end-to-end framework for trajectory synthesis for autonomous racing. We3

train and demonstrate the effectiveness of our approach using a high fidelity and4

photo-realistic Formula One gaming environment - used by real racing drivers.5

This is the first work that has used the highly realistic F1 game as a simulation6

environment for deep learning models. We present a novel method for single7

agent autonomous racing by training a deep neural network to predict a parame-8

terized representation of a trajectory. Our Bezier curve based trajectory synthesis9

approach outperforms several other end-to-end DNN approaches for autonomous10

racing. In addition to evaluating our methodology in a closed-loop manner in the11

game; we also implement the DeepRacing algorithm on a 1/10 scale autonomous12

racing test-bed and show its ability to handle real-world data at high speeds.13

1 Introduction14

What would an autonomous car do if a vehicle swerves across lanes without any indication? How15

about a high-speed unexpected lane merge ? or when the car in front of you brakes aggressively with-16

out warning? The biggest challenge with current deep learning based approaches for autonomous17

driving is, how to ensure that the car drives safely, and reliably in situations that don’t happen very18

often in day to day driving, and are therefore difficult to gather data on.19

In our research we are teaching autonomous cars to learn how to drive at the limits of their agility,20

and maneuverability. The way we do this is by autonomously racing these cars against each other,21

both in highly photo-realistic simulation and on real 1/10 scale physical test-beds. The high-speed,22

close proximity nature of racing makes it an ideal candidate to learn agile autonomous behavior23

which can eventually inform motion planning for commercial autonomous self-driving.24

Demonstrating high-speed autonomous racing can be considered as a grand challenge for vision25

based end-to-end models, and making progress here has the potential to enable breakthroughs in26

agile and safe autonomy. To succeed at racing, an autonomous vehicle is required to perform both27

precise steering and throttle maneuvers in a physically-complex, uncertain environment, and by28

executing a series of high-frequency decisions. This makes racing an interesting opportunity to29

explore edge-cases and extreme conditions of autonomous driving.30

Autonomous racing is also slowly becoming a motorsport featuring head-to-head battle of algo-31

rithms. Roborace [1] is the Formula E’s sister series, which will feature fully autonomous race cars32

in the near future. Autonomous racing competitions, such as F1/10 racing and Autonomous Formula33

Submitted to Machine Learning for Autonomous Driving Workshop at the 34th Conference on Neural Infor-
mation Processing Systems (NeurIPS 2020). Do not distribute.



Figure 1: Compared to pixels to control, a pixels to waypoint approach is developed; where low level steering
is handled using a pure-pursuit controller.

SAE are, both figuratively and literally, getting a lot of traction and becoming proving grounds for34

testing perception, planing, and control algorithms at high speeds.35

We present DeepRacing AI, a novel end-to-end framework for training and evaluating algorithms36

specifically for autonomous racing. DeepRacing uses the Formula One (F1) Codemasters game as37

a virtual testbed [2]. Previously [2] we have demonstrated end-to-end autonomous racing in the F138

game. In this paper we extend our approach for predicting parameterized Bézier Curves trajectory39

for the autonomous agent instead of mapping pixels directly to control, which results in a more40

stable and faster autonomous racing behavior.41

In summary, the contributions of the work are:42

1. A photo-realistic testbed for training and testing agile driving policies43

2. A case study of a new approach to learning agile behavior against several existing ap-44

proaches45

3. Some preliminary results for how this approach translates from our virtual environment to46

a physical car47

2 Problem Statement48

The problem of autonomous driving distills to the task of scene understanding through sensor mea-49

surements, e.g. cameras, LIDAR point clouds, ultrasonic sensors, etc., and producing control inputs50

for the car, typically steering angle and throttle. Expressed mathematically, if the domain of the51

vehicle’s entire sensor suite is X and the space of the vehicle’s control outputs is U, then the general52

problem of autonomous driving is a mapping from X → U. Autonomous racing requires a great53

many control inputs: steering, acceleration, clutch, fuel mix selector, clutch bite point, and regener-54

ative braking; just to name a few. For simplicity, we assume that the control domain of the racecar55

is steering and acceleration (a 2-dimensional euclidean space, R2). We focus on a vision based ap-56

proach and assume that the car’s input sensor domain is fixed-width images: R3xHxW , i.e. images57

with 3 channels (3-channel color images are assumed for this work) of height H and width W .58

We consider three high-level approaches to this problem. Figure 1 provides a graphical description59

of these three approaches.60

2.1 Approach 1: Pixels to Control61

There is a great body of work in this domain centered around the special case where U consists62

of only steering angles. NVIDIA’s PilotNet architecture [3] is considered a seminal work on this63

approach. It focuses on mapping what the car’s sensor suite is seeing at the present time to a single64

control command, at the present time. This is done in an end-to-end manner i.e. the DNN is trained65

to directly map pixels to control outputs: R3xHxW → R2. However, this model of autonomous66

driving does a poor job of capturing how expert drivers behave. An expert driver considers a history67

2



of previous observations to build up some temporal context about the scene. Using only single static68

images can create an ill-posed problem in which the map from pixels to control is not a function.69

Consider the images and corresponding ground-truth trajectories in Figure 2[left]. Even though the70

images are similar, their ground-truth trajectories differ noticeably. Within only 1.4 seconds, the71

paths diverge by almost 9 meters. In a high-speed scenario like racing, this could easily be the72

difference between a successful race and a devastating crash.73

An alternative approach [2] is to consider a sensor reading as a sequence of images:74

Ii−N , Ii−N+1, Ii−N+2, ..., Ii, where the subscript i represents the current time and c represents75

some number of time-steps into the past, as a single measurement that is then used to predict a se-76

quence of control outputs ri+1, ri+2, ri+3, ...ri+P ∈ R3, where rk represents a control output at77

time k. This view of the problem is a mapping from a context window of sensor readings to an intent78

window of control outputs for the autonomous vehicle: RNxCxHxW → RPx3 However, this fully79

end-to-end approach has it’s weaknesses. For very high-speed systems such as a race car, small80

errors in a control input map to very large errors in the actual path the car follows and can create81

catastrophic results.82

2.2 Approach 2: Pixels to Waypoints83

To remedy this problem, one could view the problem of autonomous driving not as a static function84

from pixels to control, but as a temporally varying task that maps sensor inputs to curves in the am-85

bient task space of the ego vehicle. In this approach, the autonomous car needs to predict a sequence86

of waypoints in the ego vehicle’s task space. I.e. the problem becomes mapping as sequence of im-87

ages: Ii−N , Ii−N+1, Ii−N+2, ..., Ii to a sequence of waypoints: ~ri+1, ~ri+2, ~ri+3, ...~ri+P ∈ RD88

where D is the dimensionality of the task space. Expressed mathematically, a function of the89

form:RNx3xHxW → RP x D This approach falls along a similar lines as end-to-end control by90

mapping a context window to a long-term intent, but the intent window is a set of points for the car91

to follow. The task of mapping a predicted trajectory for the car to follow down to a specific steering92

and throttle value for the car’s low-level control is left to classical control techniques based on a93

bicycle model of the car’s kinematics. For this work, a Pure Pursuit controller is used.94

This approach also has it’s weaknesses. It suffers from the so-called “curse of dimensionality” and95

can produce very non-smooth paths. With so many parameters required to represent a single output96

(P x D of them), models that are already prone to over-fitting like deep neural networks can predict97

very noisy output trajectories that can vary significantly with only minor (possibly imperceptible)98

changes in the input images.99

If a model predicts even a single waypoint incorrectly, this can cause a serious error in the car’s100

chosen control action.101

2.3 Approach 3: Pixels to Bezier Curves102

Finally, we consider a novel approach to autonomous racing. Rather than training a neural network103

fully end-to-end, we view the problem of trajectory prediction not as a mapping from images to104

waypoints, but from images to a parameterized description of a smooth 1-manifold embedded in the105

Figure 2: [Left] Purely Markovian methods like CNNs can present an ill-posed problem. For two very similar
static images, the trajectories differ significantly. [Right]We use the F1 Codemasters© game as a virtual testbed
for training and closed-loop testing for our autonomous racing deep neural network. This is the first time the
highly photo-realistic and high fidelity physics engine enabled game has been used for autonomous racing
development.

3



car’s task space. To this end, we use Bézier Curves as a canonical form of curves in an autonomous106

racecar’s task space. Bézier Curves are a linear combination of Bernstein Polynomials and are107

described in more detail in section 5.1. Our model uses the images in the context window to predict108

the control points of a Bézier curve to generate the trajectory for the autonomous racecar.109

3 Related Work110

We divide the related work into simulation testbeds and autonomous driving methods and provide a111

brief reprise on both. Simulation capabilities have been primarily used in the planning and control112

phase of AD [4, 5, 6]. More recently, simulation has been used in the entire AD pipeline, from113

perception and planning to control [7]. Researchers have tried to use images from video games to114

train deep-learning-based perception systems [8, 9]. End-to-end driving was showcased in the car115

racing game TORCS [10] using Reinforcement Learning but its physics and graphics lack realism.116

In one of the earliest work on end-to-end autonomous driving NVIDIA [3] presented the PilotNet117

CNN architecture. PilotNet is a feed-forward style network that directly regresses to a single steering118

value for each input image obtained from a front facing dashboard camera. [11] uses an event camera119

to batch images from an arbitrary number of time-steps as an input to a CNN and achieve a perfor-120

mance increase. [12] present a different approach that uses Long Short-term Memory Cells [13] as a121

means of capturing a history of the steering trajectory and encode temporal structure of the problem.122

[14] use a novel combination of CNN and a traditional auto-encoder approach. This network uses a123

CNN for feature extraction and applies an encoding function to translate the regression problem into124

a more manageable classification problem. [15] also present a novel approach that blends expert125

domain knowledge of highway driving by defining a notion of image affordance that is then mapped126

to a steering command.127

[16] use an LSTM cell to predict a series of waypoints for images of highway driving at varying128

traffic densities. [17] present an approach for generating waypoints with a CNN and then using a129

Model Predictive Controller (MPC) to control the vehicle. [18] use a similar approach to predict130

waypoints based on expert demonstration. [19] is a blend of several techniques, but their neural131

network is penalized (increased loss) for veering too far off of a prescribed list of waypoints. [20]132

use a similar approach and also intentionally focus on high-speed scenarios, similar to racing.133

In this work, we present a different approach that learns a parameterized representation of a trajec-134

tory rather than the individual waypoints of that trajectory. Additionally, we utilize a photorealistic135

gaming environment to collect high-speed training data.136

4 DeepRacing: F1 Racing Simulation137

In order to train an algorithm to race autonomously we need a reliable way to generate annotated138

training data. Furthermore, it is not enough to only obtain training data, but also important to close-139

the-loop and autonomously race in the same environment to enable empirical evaluation. Conse-140

quentially, in order to generate training data under realistic racing conditions, we have converted [2]141

the official F1 racing game released by Codemasters©, into a simulation environment. This is the142

first time, the high-fidelity and photo-realistic F1 game has been used as a platform for training143

autonomous race cars. The game is extremely photo-realistic, as shown in Figure 2[Right], and is144

based on high-fidelity simulated physics. Due to its realism the game is also used in the Formula145

One eSports Series. There is a lot of evidence to suggest that real-life F1 drivers use this game146

for practicing [21]. During the 2020 Covid-19 lock-down, many real F1 drivers were competing147

online in virtual races in this game, due to its realism. The game can emulate weather conditions148

and its effects on tire degrading, braking, and handling. The game advertises a “fire-and-forget”149

data stream of telemetry data containing a variety of information about the game’s current state over150

a User Datagram Protocol (UDP) network socket. Each packet in the stream is a snapshot of the151

game’s state tagged with a timestamp for when that state was generated (Figure 2[Right]). The state152

variables broadcast by the game include, but are not limited to: (1) Steering angle, throttle and brake153

of all vehicles (including the ego vehicle), (2) Position and velocity of all vehicles, (3) Various state154

information about the ego vehicle such as wheel speed, amount of fuel remaining, and tire pressure.155

We have developed a C++ API for collecting training data, and testing learned models in the F1156

game Figure 2[Right]). Users can receive timestamped UDP packets and images as C++ objects.157

Additionally, we provide bindings to the very popular Robot Operating System 2.0 (ROS2). The158

4



testbed also supports the ability to close-the-loop and autonomously drive the F1 car in the game159

using control inputs predicted by autonomous driving policies.160

5 Bezier Curve trajectory synthesis161

In our previous work [2], we presented AdmiralNet as an extension of NVIDIA’s PilotNet [3] for162

autonomous racing. It combines the feature extraction capability of a Deep Convolutional Neural163

Network (CNN) with the temporal memory capabilities of a Long Short-Term Memory (LSTM)164

Cell. In this work we modify our network to map images to waypoints for a car to follow using a pa-165

rameterized trajectory. Once the waypoints are obtained in the ego vehicle’s frame of reference, they166

are passed onto a pure-pursuit [22] lateral controller to transform into steering control commands.167

5.1 Brief background on Bézier Curves168

A Bézier curve is a parametric curve heavily used in computer graphics and related fields. Inter-
estingly enough, the curve, a linear combination of Bernstein Polynomials, is named after Pierre
Bézier, who originally developed them to model car bodies on Renault racecars. A Bézier curve is
formed from a combination of Bernstein polynomials that maps a scalar parameter t ∈ [0, 1] to a
point in a euclidean space of dimension d, Rd. The Bézier Curve is a weighted combination of a set
of “control points”, with the weights computed from the Bernstein polynomial basis. For a set of
control points:

P = {P0,P1,P2,P3, ..Pn ∈ Rd}

The corresponding Bézier curve, B : [0, 1]→ Rd, as a function of the parameter, t, is:

B(t) =

n∑
k=0

(
n

k

)
(1− t)

n−k
tkPk

In our case, the parameter t will represent time (or step size) normalized to the interval [0, 1] d, is169

called the “dimension” of the Bézier curve and the integer n, is called the “degree” or “order” of the170

curve.171

We use Bézier curves as a parameterized representation of trajectories for a pure pursuit controller172

as well as a means of predicting trajectories for a racecar to follow.173

5.2 Supervised Waypoint Prediction174

We present a network architecture designed to map sequences of images (a context window) to175

sequence of wayppoints in the car’s task space. The input of this model is a sequence of C color176

(RGB) images, each with height H and width W , such that each input tensor is Cx3xHxW . For177

our experiments, we use C = 5, H = 66, and W = 200. It’s output is a sequence of waypoints in178

the car’s task space that are are passed to a pure-pursuit lateral controller to follow. This architecture179

is shown in Figure 3.180

Each image is passed through a CNN that maps it to a vector. These C feature vectors are then used
as the inputs to C recurrent calls to an LSTM with a hidden dimension h to build up the LSTM’s
hidden state with a learned encoding of the context window. We also extend [23]’s method of 3D
“spatio-temporal convolution” by passing the same sequence of images through a 3D convolutional
network. The output of this 3D convolution is then used as the input for p additional recurrent calls
to the LSTM. The resulting p outputs are then passed to a linear layer with input dimension h and
output dimension 2. The outputs of this linear layer are taken as the sequence of predicted way-
points, [~̂y1, ~̂y2, ~̂y3, ...~̂yp ∈ R2], each being a point in the car’s local coordinate system, consisting
of a lateral axis and a forward axis. We train this network to minimize the average euclidean dis-
tance between the predicted waypoints and the ground-truth waypoints gathered from expert driving,

[
∗
~y1,

∗
~y2,

∗
~y3, ...,

∗
~yp ∈ R2],

Lwaypoint =

p∑
i=0

√
~̂yi −

∗
~yi

5



Figure 3: Architecture For The AdmiralNet Bézier Curve Predictor.

5.3 AdmiralNet For Bézier Curve Prediction181

Waypoint prediction also has it’s limits. Derivative information cannot be implicitly encoded in a list182

of waypoints, they must be inferred numerically and are therefore not well suited to gradient back-183

propagation. Additionally, this approach suffers from the “curse of dimensionality”. Each trajectory184

required Nxd parameters to represent, forcing the machine learned model to learn significantly more185

parameters to predict more dense trajectories.186

To address these limitations, we present a novel approach for predicting future trajectories by using187

Bézier Curves as a dimensionality reduction technique. We train our model to predict the control188

points of a Bézier Curve instead of directly predicting waypoints. I.e., we train a model to predict a189

parameterized representation of a curve rather than to learn samples from that curve. This method190

addresses both limitations of the waypoint method. Derivatives of a Bézier Curve can be readily191

computed in closed-form. Additionally, any number of points can be sampled from a Bézier Curve192

without the need to learn any additional parameters in a machine learned model.193

Just as for waypoint prediction, we use a Pure Pursuit controller to map a predicted trajectory to194

steering and throttle. We evaluate the predicted Bézier Curve on a fixed sample of the interval [0, 1]195

to produce predicted waypoints rather than predicting the waypoints directly. For each pair of image196

sequences and ground truth waypoints, the network is trained to minimize a loss function that is197

a weighted sum of three terms:(1) The average squared norm between the predicted Bézier Curve198

control points and that of a least squared fit to the ground truth trajectory points, (2) The average199

euclidean distance between the predicted Bézier Curve evaluated on the interval [0, 1] and the ground200

truth waypoints: What we call “Position Loss”, and (3) The average euclidean distance between the201

predicted Bézier Curve’s derivative (velocity) evaluated on the interval [0, 1], and the ground truth202

velocities.203

Lposition =
1

N

N−1∑
i=0

~̂yi −
∗
~yi;Lvelocity =

1

N

N−1∑
i=0

d~̂yi
dt
−

∗
d~̂yi
dt

204

Lcontrol point =
1

n−1

∑n
i=0 ~̂pi −

∗
~pi205

To generate a lookahead point for the Pure Pursuit controller, the Bèzier Curve predictor takes uni-206

formly spaced samples from the predicted Bèzier Curve. To generate throttle commands, a bang-207

bang control approach is used. If the car’s current velocity is slower than the reference velocity of208

the predicted Bèzier Curve at the lookahead point, the throttle is set to it’s maximum value and brake209

is set to 0. Otherwise, the brake is set to it’s maximum value and throttle is set to 0.210

6



Figure 4: A F1 style control plot for a test run. The Bézier Curve predictor produces smoother velocity profiles.
[Right] A plot of the path followed by our approach versus the others. PilotNet fails almost immediately and
the CNN+LSTM only makes it about half-way around the track.

6 Experimental Results211

Using our DeepRacing F1 simulator, we provide case studies which compare the Bezier curve tra-212

jectory synthesis approach to the following end-to-end supervised (behavioral cloning) methods (1)213

PilotNet (pixels to control); (2) CNN + LSTM (pixels to control), and (3) Waypoint trajectory pre-214

dictor.215

We trained each model on ∼25000 images of training data from the Australia F1 circuit. The data216

was obtained using our DeepRacing API while an expert was driving the racecar on the track. Each217

model was then tested in a close-loop manner on the F1 Australia circuit for 5 test laps around the218

track, the car was reset to the same starting position on each lap. For this work, we only consider219

the single-agent version of the problem - i.e. only the ego racecar is present on the track at any time.220

The multi-agent version of the problem is part of ongoing and future work.221

6.0.1 Closed Loop Autonomous Racing Results222

For PilotNet and the CNN-LSTM architectures, each image is labeled with steering and acceleration.223

For both the Waypoint predictor and the Bézier Curve predictor, each image is labeled with 60 future224

waypoints from an expert driver. For these experiments, a context length of C = 5 is used for both225

the waypoint predictor and the Bèzier Curve predictor. The waypoint predictor was configured to226

predict 20 timesteps into the future, corresponding to 1.4 seconds. The same timescale was used227

for the Bèzier Curve predictor. To measure performance, we define a “boundary failure” (BF) to228

be when an autonomous agent veers outside the bounds of the track. We ran each model for 5 laps229

and recorded the following metrics: (1) Whether the model successfully completed a lap, (2) Mean230

Lap time (if a lap was successfully completed), (3) Mean time between boundary failures (TBF),231

(4) Mean distance along the track between boundary failures (DBF), and (5) Number of Boundary232

Failures (NBF).233

The results from these experiments are tabulated in Table 1. DNF indicates “did not finish” a suc-234

cessful lap.235

The Bézier Curve predictor outperforms all other models on all metrics. PilotNet was unable to236

complete a successful lap, as it crashed into a wall almost immediately (within 5 seconds on all 5237

runs). The CNN+LSTM architecture was also unable to complete a successful lap, but managed238

to make it around the first turn and down the initial straightaway. The Bézier Curve predictor also239

results in a smoother velocity curve than direct waypoint regression (see Figure 4).240

The Bezier curve approach lasts for 106 laps before the car crashes (likely due to heavy tire degra-241

dation modeled in the game).242

Computation Time: We measured the running time of each approach. The Bèzier Curve predictor243

is the slowest model (PilotNet was fastest at 125Hz). This is not surprising as it involves the most244

neural network layers. However, at 17Hz, it is still sufficiently fast for autonomous racing in the245

game, especially given the stability and autonomous racing performance of this method.246

7



Model
Configuration

Lap Time
(seconds)

TBF
(seconds)

DBF
(meters)

Number of
Boundary Failures

BFS
(meters) Successful Laps

PilotNet DNF 4.07 181.444 1.800 4.267 0
CNN-LSTM DNF 6.367 304.490 3.600 2.539 0

Waypoint Predictor
without 3D Convolution 113.38 11.92 626.23 6.6 7.02 1

Waypoint Predictor 106.683 16.739 855.817 5.6 0.239 4
Bézier Curve Predictor

without 3D Convolution 99.95 19.01 1008.46 7.4 2.89 5

Bézier Curve Predictor 101.72 33.62 1786.36 1.8 0.041 5

Table 1: Results of our closed-loop testing. Note that the Bézier Curve Predictor outperforms all of the other
models on (almost) all metrics. Also note that removing the 3d convolutional layers and replacing their outputs
with learnable constants significantly degrades performance on both trajectory prediction models. All figures
are arithmetic means across 5 laps. “DNF” indicates the model did not finish a lap. TBF: Mean time between
boundary failures, DBF: Mean distance between boundary failures.

Figure 5: [Top]DeepRacing AI was implemented on a 1/10 autonomous racing testbed using ROS. [Bottom]
The ground-truth waypoints and predicted B‘ezier Curve next to sample images from the testbed.

1/10 scale autonomous racing testbed: Additionally, we conduct an offline evaluation of our Bèzier247

Curve Predictor on a 1
10 -scale autonomous racecar (Figure 5[Top]). The Bèzier Curve Predictor was248

trained on a set of 15000 images taken from a webcam attached to the front of the racecar while an249

expert driver drove the car around a track. We then train the Bezier curve trajectory predictor on a250

randomly selected 13500 of these images for 200 epochs, with the remaining 1500 images reserved251

for offline validation. After training was complete, we evaluate the trained model with the RMSE252

between the predicted Bèzier Curve and the ground-truth waypoints for an image sequence ending253

in each of the unseen images. the Bèzier Curve Predictor achieved an RMSE value of 0.045. Figure254

5[Bottom] shows some example images and the corresponding predicted Bèzier Curves.255

7 Conclusion and Future Work256

We present DeepRacing - a novel end-to-end framework, and a virtual testbed for training and eval-257

uating algorithms for the hard challenge of autonomous racing. We also develop and present a258

new parametrized trajectory-based end-to-end learnable network for autonomous racing which uses259

Bézier Curves. It outperforms traditional end-to-end networks by a significant margin and outper-260

8



forms waypoint-based planning by ∼ 5 seconds in terms of lap time and by over 100% in terms261

of time between failures, all while being robust and computationally tractable. The results and the262

work so far has focused on autonomous racing in a time-trial manner, i.e. only one vehicle on the263

track at a time. Our ongoing and future work include a more focused study of head-to-head racing264

(multi-agent setting) with a stronger focus on real-world racing metrics like lap time and overall265

race position. We also intend to explore and compare our method with reinforcement learning based266

approaches for this problem.267

References268

[1] Global championship of driverless cars. url=https://roborace.com/, journal=Roborace.269

[2] Trent Weiss and Madhur Behl. Deepracing: A framework for agile autonomy. Design, Au-270

tomation and Test in Europe Conference, 2020.271

[3] M. Bojarski, P. Yeres, A. Choromanska, et al. Explaining how a deep neural network trained272

with end-to-end learning steers a car. CoRR, abs/1704.07911, 2017.273

[4] Maxim Likhachev and Dave Ferguson. Planning long dynamically feasible maneuvers for274

autonomous vehicles. The International Journal of Robotics Research, 28(8):933–945, 2009.275

[5] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban challenge: AV in city276

traffic, volume 56. springer, 2009.277

[6] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika Deka. Real-time mo-278

tion planning methods for autonomous on-road driving: State-of-the-art and future research279

directions. Transportation Research Part C: Emerging Technologies, 60:416–442, 2015.280

[7] Scott Pendleton and Hans et al. Andersen. Perception, planning, control, and coordination for281

autonomous vehicles. Machines, 5(1):6, 2017.282

[8] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nittur Sridhar, Karl283

Rosaen, and Ram Vasudevan. Driving in the matrix: Can virtual worlds replace human-284

generated annotations for real world tasks? arXiv preprint arXiv:1610.01983, 2016.285

[9] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data: Ground286

truth from computer games. In European Conference on Computer Vision, pages 102–118.287

Springer, 2016.288

[10] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimitrakakis, Rémi Coulom,289

and Andrew Sumner. Torcs, the open racing car simulator. http://torcs. sourceforge. net, 4:6,290

2000.291

[11] Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso N. Garcı́a, and Davide Scara-292

muzza. Event-based vision meets deep learning on steering prediction for self-driving cars.293

CoRR, abs/1804.01310, 2018.294

[12] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton Fookes. Going deeper:295

Autonomous steering with neural memory networks. In IEEE Conference on Computer Vision296

and Pattern Recognition, pages 214–221, Hawaii Convention Center HI, 2017.297

[13] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Continual predic-298

tion with lstm. 1999.299

[14] Hesham M. Eraqi, Mohamed N. Moustafa, and Jens Honer. End-to-end deep learning for300

steering autonomous vehicles considering temporal dependencies. CoRR, abs/1710.03804,301

2017.302

[15] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning affor-303

dance for direct perception in autonomous driving. In ICCV, December 2015.304

[16] F. Altché and A. de La Fortelle. An lstm network for highway trajectory prediction. In 2017305

IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pages 353–306

359, Oct 2017.307

9



[17] Eslam Mohammed, Mohammed Abdou, and Omar Ahmed Nasr. End-to-end deep path plan-308

ning and automatic emergency braking camera cocoon-based solution. In Machine Learning309

for Autonomous Driving, NeurIPS 2019 Workshop, December 2019.310

[18] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning by cheating, 2019.311

[19] Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. Chauffeurnet: Learning to drive by312

imitating the best and synthesizing the worst. CoRR, abs/1812.03079, 2018.313

[20] Jeff Michels, Ashutosh Saxena, and Andrew Y. Ng. High speed obstacle avoidance using314

monocular vision and reinforcement learning. ICML ’05, page 593–600, New York.315

[21] Max verstappen trains using sim racing. Redline UK, 2017.316

http://www.teamredline.co.uk/work/max-verstappen/.317

[22] Richard S Wallace, Anthony Stentz, Charles E Thorpe, Hans P Moravec, William Whittaker,318

and Takeo Kanade. First results in robot road-following. In IJCAI, pages 1089–1095. Citeseer,319

1985.320

[23] Lu Chi and Yadong Mu. Learning end-to-end autonomous steering model from spatial and321

temporal visual cues. In Proceedings of the Workshop on Visual Analysis in Smart and Con-322

nected Communities, VSCC ’17, pages 9–16, NY, USA, 2017. ACM.323

10


