
DeepRacing AI: Agile Trajectory Synthesis for
Autonomous Racing

Trent Weiss, Varundev SureshBabu, and Madhur Behl
Department of Computer Science

University of Virginia
Charlottesville, VA, USA

{ttw2xk,vss8sm,madhur.behl}@virginia.edu

Abstract—Demonstrating high-speed autonomous racing can
be considered as a grand challenge for vision based end-to-
end deep learning models. DeepRacing AI is a novel end-to-end
framework for trajectory synthesis for autonomous racing. We
train and demonstrate the effectiveness of our approach using a
high fidelity and photo-realistic Formula One gaming environ-
ment - used by real racing drivers. This is the first work that has
used the highly realistic F1 game as a simulation environment for
deep learning models. We present a novel method for single agent
autonomous racing by training a deep neural network to predict
a parameterized representation of a trajectory. Our Bezier curve
based trajectory synthesis approach outperforms several other
end-to-end DNN approaches for autonomous racing. In addition
to evaluating our methodology in a closed-loop manner in the
game; we also implement the DeepRacing algorithm on a 1/10
scale autonomous racing test-bed and show its ability to handle
real-world data at high speeds.

I. INTRODUCTION

What would an autonomous car do if a vehicle swerves
across lanes without any indication? How about a high-speed
unexpected lane merge ? or when the car in front of you
brakes aggressively without warning? The biggest challenge
with current deep learning based approaches for autonomous
driving is, how to ensure that the car drives safely, and reliably
in situations that don’t happen very often in day to day driving,
and are therefore difficult to gather data on.

In our research we are teaching autonomous cars to learn
how to drive at the limits of their agility, and maneuverability.
The way we do this is by autonomously racing these cars
against each other, both in highly photo-realistic simulation
and on real 1/10 scale physical test-beds. The high-speed,
close proximity nature of racing makes it an ideal candidate to
learn agile autonomous behavior which can eventually inform
motion planning for commercial autonomous self-driving.

Demonstrating high-speed autonomous racing can be con-
sidered as a grand challenge for vision based end-to-end
models, and making progress here has the potential to en-
able breakthroughs in agile and safe autonomy. To succeed
at racing, an autonomous vehicle is required to perform
both precise steering and throttle maneuvers in a physically-
complex, uncertain environment, and by executing a series of
high-frequency decisions. End-to-end models for autonomous
driving have attracted much research interest because they
eliminate the process of feature engineering.

Autonomous racing is also slowly becoming a motorsport
featuring head-to-head battle of algorithms. Roborace [1] is the
Formula E’s sister series, which will feature fully autonomous
race cars in the near future. Autonomous racing competitions,
such as F1/10 racing and Autonomous Formula SAE are, both
figuratively and literally, getting a lot of traction and becoming
proving grounds for testing perception, planing, and control
algorithms at high speeds.

We present DeepRacing AI, a novel end-to-end frame-
work for training and evaluating algorithms specifically for
autonomous racing. DeepRacing uses the Formula One (F1)
Codemasters game as a virtual testbed [2]. Previously [2] we
have demonstrated end-to-end autonomous racing in the F1
game. In this paper we extend our approach for predicting
parameterized Bézier Curves trajectory for the autonomous
agent instead of mapping pixels directly to control. This results
in a more stable and faster autonomous racing behavior.

II. PROBLEM STATEMENT

The problem of autonomous driving distills to the task
of scene understanding through sensor measurements, e.g.
cameras, LIDAR point clouds, ultrasonic sensors, etc., and
producing control inputs for the car, typically steering angle
and throttle. Expressed mathematically, if the domain of the
vehicle’s entire sensor suite is X and the space of the vehicle’s
control outputs is U, then the general problem of autonomous
driving is a mapping from X → U. Autonomous racing
requires a great many control inputs: steering, acceleration,
clutch, fuel mix selector, clutch bite point, and regenerative
braking; just to name a few. For simplicity, we assume that
the control domain of the racecar is steering and acceleration
(a 2-dimensional euclidean space, R2). We focus on a vision
based approach and assume that the car’s input sensor domain
is fixed-width images: R3xHxW , i.e. images with 3 channels
(3-channel color images are assumed for this work) of height
H and width W .

We consider three high-level approaches to this problem.
Figure 1 provides a graphical description of these three ap-
proaches.



Fig. 1. Compared to pixels to control, a pixels to waypoint approach is
developed; where low level steering is handled using a pure-pursuit controller.

A. Approach 1: Pixels to Control

There is a great body of work in this domain centered
around the special case where U consists of only steering
angles. NVIDIA’s PilotNet architecture [3] is considered a
seminal work on this approach. It focuses on mapping what
the car’s sensor suite is seeing at the present time to a single
control command, at the present time. This is done in an end-
to-end manner i.e. the DNN is trained to directly map pixels
to control outputs: R3xHxW → R2. However, this model of
autonomous driving does a poor job of capturing how expert
drivers behave. An expert driver considers a history of previous
observations to build up some temporal context about the
scene. Using only single static images can create an ill-posed
problem in which the map from pixels to control is not a
function. Consider the images and corresponding ground-truth
trajectories in Figure 2. Even though the images are similar,
their ground-truth trajectories differ noticeably. Within only
1.4 seconds, the paths diverge by almost 9 meters. In a high-
speed scenario like racing, this could easily be the difference
between a successful race and a devastating crash.

An alternative approach deepracing-date is to
consider a sensor reading as a sequence of images:
Ii−N , Ii−N+1, Ii−N+2, ..., Ii, where the subscript i represents
the current time and c represents some number of time-
steps into the past, as a single measurement that is
then used to predict a sequence of control outputs
ri+1, ri+2, ri+3, ...ri+P ∈ R3, where rk represents a
control output at time k. This view of the problem is a
mapping from a context window of sensor readings to

Fig. 2. Purely Markovian methods like CNNs can present an ill-posed
problem. For two very similar static images, the trajectories differ significantly.

an intent window of control outputs for the autonomous
vehicle: RNxCxHxW → RPx3 However, this fully end-to-end
approach has it’s weaknesses. For very high-speed systems
such as a race car, small errors in a control input map to very
large errors in the actual path the car follows and can create
catastrophic results.

B. Approach 2: Pixels to Waypoints

To remedy this problem, one could view the problem of
autonomous driving not as a static function from pixels to
control, but as a temporally varying task that maps sensor
inputs to curves in the ambient task space of the ego vehi-
cle. In this approach, the autonomous car needs to predict
a sequence of waypoints in the ego vehicle’s task space.
I.e. the problem becomes mapping as sequence of images:
Ii−N , Ii−N+1, Ii−N+2, ..., Ii to a sequence of waypoints:
~ri+1, ~ri+2, ~ri+3, ...~ri+P ∈ RD where D is the dimensionality
of the task space. Expressed mathematically, a function of
the form:RNx3xHxW → RP x D This approach falls along
a similar lines as end-to-end control by mapping a context
window to a long-term intent, but the intent window is a set
of points for the car to follow rather than a control schedule.
The task of mapping a predicted trajectory for the car to follow
down to a specific steering and throttle value for the car’s low-
level control is left to classical control techniques based on a
bicycle model of the car’s kinematics. For this work, a Pure
Pursuit controller is used.

This approach also has it’s weaknesses. It suffers from the
so-called “curse of dimensionality” and can produce very non-
smooth paths. With so many parameters required to represent
a single output (P x D of them), models that are already
prone to over-fitting like deep neural networks can predict very
noisy output trajectories that can vary significantly with only
minor (possibly imperceptible) changes in the input images. If
a model predicts even a single waypoint incorrectly, this can
cause a serious error in the car’s chosen control action.

C. Approach 3: Pixels to Bezier Curves

Finally, we consider a novel approach to autonomous racing.
Rather than training a neural network fully end-to-end, we
view the problem of trajectory prediction not as a mapping
from images to waypoints, but from images to a parameterized
description of a smooth 1-manifold embedded in the car’s task
space. B-Splines are a very intuitive choice, as they are C∞

curves and are commonly used for motion planning tasks [4].
However, their recursive representation does not fit well with
gradient back-propagation, making it difficult to apply them
in the context of trajectory prediction. To remedy this, we use
Bézier Curves as a canonical form of curves in an autonomous
racecar’s task space. Bézier Curves are a linear combination
of Bernstein Polynomials and are described in more detail in
section V-A. Our model uses the images in the context window
to predict the control points of a Bézier curve to generate the
trajectory for the autonomous racecar.



III. RELATED WORK

We divide the related work into simulation testbeds and
autonomous driving methods and provide a brief reprise on
both. Simulation capabilities have been primarily used in the
planning and control phase of AD [5]–[7]. More recently,
simulation has been used in the entire AD pipeline, from
perception and planning to control [8]. Researchers have tried
to use images from video games to train deep-learning-based
perception systems [9], [10]. End-to-end driving was show-
cased in the car racing game TORCS [11] using Reinforcement
Learning but its physics and graphics lack realism.

In one of the earliest work on end-to-end autonomous
driving NVIDIA [3] presented the PilotNet CNN architecture.
PilotNet is a feed-forward style network that directly regresses
to a single steering value for each input image obtained from
a front facing dashboard camera. [12] uses an event camera
to batch images from an arbitrary number of time-steps as
an input to a CNN and achieve a performance increase.
[13] present a different approach that uses Long Short-term
Memory Cells [14] as a means of capturing a history of
the steering trajectory and encode temporal structure of the
problem. [15] use a novel combination of CNN and a tradi-
tional auto-encoder approach. This network uses a CNN for
feature extraction and applies an encoding function to translate
the regression problem into a more manageable classification
problem. [16] also present a novel approach that blends expert
domain knowledge of highway driving by defining a notion of
image affordance that is then mapped to a steering command.

[17] use an LSTM cell to predict a series of waypoints for
images of highway driving at varying traffic densities. [18]
present an approach for generating waypoints with a CNN and
then using a Model Predictive Controller (MPC) to control
the vehicle. [19] use a similar approach to predict waypoints
based on expert demonstration. [20] is a blend of several
techniques, but their neural network is penalized (increased
loss) for veering too far off of a prescribed list of waypoints.
[21] use a similar approach and also intentionally focus on
high-speed scenarios, similar to racing.

IV. DEEPRACING: F1 RACING SIMULATION

In order to train an algorithm to race autonomously we need
a reliable way to generate annotated training data. Further-
more, it is not enough to only obtain training data, but also
important to close-the-loop and autonomously race in the same
environment to enable empirical evaluation. Consequentially,
in order to generate training data under realistic racing con-
ditions, we have converted [2] the official F1 racing game
released by Codemasters c©, into a simulation environment.
This is the first time, the high-fidelity and photo-realistic F1
game has been used as a platform for training autonomous
race cars. The game is extremely photo-realistic, as shown in
Figure 3, and is based on high-fidelity simulated physics. Due
to its realism the game is also used in the Formula One eSports
Series. There is a lot of evidence to suggest that real-life F1
drivers use this game for practicing [22]. During the 2020
Covid-19 lock-down, many real F1 drivers were competing

Fig. 3. We use the F1 Codemasters c© game as a virtual testbed for training
and closed-loop testing for our autonomous racing deep neural network. This
is the first time the highly photo-realistic and high fidelity physics engine
enabled game has been used for autonomous racing development.

online in virtual races in this game, due to its realism. The
game can emulate weather conditions and its effects on tire
degrading, braking, and handling. The game advertises a “fire-
and-forget” data stream of telemetry data containing a variety
of information about the game’s current state over a User
Datagram Protocol (UDP) network socket. Each packet in
the stream is a snapshot of the game’s state tagged with a
timestamp for when that state was generated (Figure 3). The
state variables broadcast by the game include, but are not
limited to: (1) Steering angle, throttle and brake of all vehicles
(including the ego vehicle), (2) Position and velocity of all
vehicles, (3) Various state information about the ego vehicle
such as wheel speed, amount of fuel remaining, and tire
pressure. We have developed a C++ API for collecting training
data, and testing learned models in the F1 game (Figure 3).
Users can receive timestamped UDP packets and images as
C++ objects. Additionally, we provide bindings to the very
popular Robot Operating System 2.0 (ROS2). The testbed
also supports the ability to close-the-loop and autonomously
drive the F1 car in the game using control inputs predicted by
autonomous driving policies.

V. BEZIER CURVE TRAJECTORY SYNTHESIS

In our previous work [2], we presented AdmiralNet as an
extension of NVIDIA’s PilotNet [3] for autonomous racing.
It combines the feature extraction capability of a Deep Con-
volutional Neural Network (CNN) with the temporal memory
capabilities of a Long Short-Term Memory (LSTM) Cell. In
this work we modify our network to map images to waypoints
for a car to follow using a parameterized trajectory. Once the
waypoints are obtained in the ego vehicle’s frame of reference,
they are passed onto a pure-pursuit [23] lateral controller to
transform into steering control commands.

A. Brief background on Bézier Curves

A Bézier curve is a parametric curve heavily used in
computer graphics and related fields. Interestingly enough,
the curve, a linear combination of Bernstein Polynomials, is
named after Pierre Bézier, who originally developed them



to model car bodies on Renault racecars. A Bézier curve
is formed from a combination of Bernstein polynomials that
maps a scalar parameter t ∈ [0, 1] to a point in a euclidean
space of dimension d, Rd. The Bézier Curve is a weighted
combination of a set of “control points”, with the weights
computed from the Bernstein polynomial basis. For a set of
control points:

P = {P0,P1,P2,P3, ..Pn ∈ Rd}

The corresponding Bézier curve, B : [0, 1] → Rd, as a
function of the parameter, t, is:

B(t) =
n∑

k=0

(
n

k

)
(1− t)

n−k
tkPk

In our case, the parameter t will represent time (or step size)
normalized to the interval [0, 1] d, is called the “dimension”
of the Bézier curve and the integer n, is called the “degree”
or “order” of the curve.

We use Bézier curves as a parameterized representation of
trajectories for a pure pursuit controller as well as a means of
predicting trajectories for a racecar to follow.

B. Supervised Waypoint Prediction

We present a network architecture designed to map se-
quences of images (a context window) to sequence of wayp-
points in the car’s task space. The input of this model is a
sequence of C color (RGB) images, each with height H and
width W , such that each input tensor is Cx3xHxW . For our
experiments, we use C = 5, H = 66, and W = 200. It’s
output is a sequence of waypoints in the car’s task space that
are are passed to a pure-pursuit lateral controller to follow.
This architecture is shown in Figure 4.

Each image is passed through a CNN that maps it to a
vector. These C feature vectors are then used as the inputs to C
recurrent calls to an LSTM with a hidden dimension h to build
up the LSTM’s hidden state with a learned encoding of the
context window. We also extend [24]’s method of 3D “spatio-
temporal convolution” by passing the same sequence of images
through a 3D convolutional network. The output of this 3D
convolution is then used as the input for p additional recurrent
calls to the LSTM. The resulting p outputs are then passed to
a linear layer with input dimension h and output dimension 2.
The outputs of this linear layer are taken as the sequence of
predicted waypoints, [~̂y1, ~̂y2, ~̂y3, ...~̂yp ∈ R2], each being a point
in the car’s local coordinate system, consisting of a lateral axis
and a forward axis. We train this network to minimize the
average euclidean distance between the predicted waypoints
and the ground-truth waypoints gathered from expert driving,

[
∗
~y1,

∗
~y2,

∗
~y3, ...,

∗
~yp ∈ R2],

Lwaypoint =

p∑
i=0

√
~̂yi −

∗
~yi

Fig. 4. Architecture For The AdmiralNet Bézier Curve Predictor.

C. AdmiralNet For Bézier Curve Prediction

Waypoint prediction also has it’s limits. Derivative infor-
mation cannot be implicitly encoded in a list of waypoints,
they must be inferred numerically and are therefore not
well suited to gradient back-propagation. Additionally, this
approach suffers from the “curse of dimensionality”. Each
trajectory required Nxd parameters to represent, forcing the
machine learned model to learn significantly more parameters
to predict more dense trajectories.

To address these limitations, we present a novel approach
for predicting future trajectories by using Bézier Curves as
a dimensionality reduction technique. We train our model
to predict the control points of a Bézier Curve instead of
directly predicting waypoints. I.e., we train a model to predict
a parameterized representation of a curve rather than to
learn samples from that curve. This method addresses both
limitations of the waypoint method. Derivatives of a Bézier
Curve can be readily computed in closed-form. Additionally,
any number of points can be sampled from a Bézier Curve
without the need to learn any additional parameters in a
machine learned model.

Just as for waypoint prediction, we use a Pure Pursuit
controller to map a predicted trajectory to steering and throttle.
We evaluate the predicted Bézier Curve on a fixed sample
of the interval [0, 1] to produce predicted waypoints rather
than predicting the waypoints directly. For each pair of image
sequences and ground truth waypoints, the network is trained
to minimize a loss function that is a weighted sum of three
terms:(1) The average squared norm between the predicted
Bézier Curve control points and that of a least squared fit to
the ground truth trajectory points, (2) The average euclidean
distance between the predicted Bézier Curve evaluated on
the interval [0, 1] and the ground truth waypoints: What we
call “Position Loss”, and (3) The average euclidean distance
between the predicted Bézier Curve’s derivative (velocity)
evaluated on the interval [0, 1], and the ground truth velocities.

Lposition =
1

N

N−1∑
i=0

~̂yi −
∗
~yi;Lvelocity =

1

N

N−1∑
i=0

d~̂yi
dt
−

∗
d~̂yi
dt



Lcontrol point =
1

n−1
∑n

i=0 ~̂pi −
∗
~pi

To generate a lookahead point for the Pure Pursuit con-
troller, the Bèzier Curve predictor takes uniformly spaced
samples from the predicted Bèzier Curve. To generate throttle
commands, a bang-bang control approach is used. If the car’s
current velocity is slower than the reference velocity of the
predicted Bèzier Curve at the lookahead point, the throttle is
set to it’s maximum value and brake is set to 0. Otherwise,
the brake is set to it’s maximum value and throttle is set to 0.

VI. EXPERIMENTAL RESULTS

Using our DeepRacing F1 simulator, we provide case
studies which compare the Bezier curve trajectory synthesis
approach to the following end-to-end supervised (behavioral
cloning) methods (1) PilotNet (pixels to control); (2) CNN
+ LSTM (pixels to control), and (3) Waypoint trajectory
predictor.

Each neural network architecture was trained for 100 epochs
under it’s corresponding loss function with a mini-batch size of
128. Stochastic Gradient Descent with a step size of 10−4 was
used as the underlying optimization routine for network weight
training. For the Bézier Curve predictor, we use weighting
factors of wposition = 1.0, wvelocity = 0.1, wcontrol point =
0.05. We trained each model on ∼25000 images of training
data from the Australia F1 circuit. The data was obtained
using our DeepRacing API while an expert was driving the
racecar on the track. Each model was then tested in a close-
loop manner on the F1 Australia circuit for 5 test laps around
the track, the car was reset to the same starting position on
each lap. For this work, we only consider the single-agent
version of the problem - i.e. only the ego racecar is present on
the track at any time. The multi-agent version of the problem
is part of ongoing and future work.

1) Closed Loop Autonomous Racing Results: For PilotNet
and the CNN-LSTM architectures, each image is labeled with
steering and acceleration. For both the Waypoint predictor and
the Bézier Curve predictor, each image is labeled with 60
future waypoints from an expert driver. For these experiments,
a context length of C = 5 is used for both the waypoint
predictor and the Bèzier Curve predictor. The waypoint pre-
dictor was configured to predict 20 timesteps into the future,
corresponding to 1.4 seconds. The same timescale was used
for the Bèzier Curve predictor. To measure performance, we
define a “boundary failure” (BF) to be when an autonomous
agent veers outside the bounds of the track. We ran each
model for 5 laps and recorded the following metrics: (1)
Whether the model successfully completed a lap, (2) Mean
Lap time (if a lap was successfully completed), (3) Mean time
between boundary failures (TBF), (4) Mean distance along the
track between boundary failures (DBF), and (5) Number of
Boundary Failures (NBF).

The results from these experiments are tabulated in Table 6
. All figures are arithmetic means across all 5 laps. DNF
indicates “did not finish” a successful lap.

The Bézier Curve predictor outperforms all other models on
all metrics. PilotNet was unable to complete a successful lap,

Fig. 5. A F1 style control plot for a test run. The Bézier Curve predictor
produces smoother velocity profiles. [Right] A plot of the path followed by
our approach versus the others. PilotNet fails almost immediately and the
CNN+LSTM only makes it about half-way around the track.

Fig. 6. Results of our closed-loop testing. The Bézier Curve Predictor
outperforms all of the other models on all metrics. “DNF” indicates the model
did not finish a lap. TBF: Mean time between boundary failures, DBF: Mean
distance between boundary failures.

as it crashed into a wall almost immediately (within 5 seconds
on all 5 runs). The CNN+LSTM architecture was also unable
to complete a successful lap, but managed to make it around
the first turn and down the initial straightaway. The Bézier
Curve predictor also results in a smoother velocity curve than
direct waypoint regression (see Figure 5).

Longevity test: We also performed a longevity test of each
of the trajectory-based methods. In this test, each model was
deployed to a test run and allowed to continue until the vehicle
either crashed or became inoperable. The direct waypoint
predictor + pure pursuit lasted for 11 laps before the car
completely crashed into a barrier. The Bezier curve approach
lasts for 106 laps before the car crashes (likely due to heavy
tire degradation modeled in the game).

Computation Time: The control loop for each approach
consists of three steps: Get a snapshot of the circular buffer
containing the C most recently sampled images, evaluate the
model on this snapshot, and generate control commands from
the model’s output. We measured the running time of this
control loop for each approach. The Bèzier Curve predictor is
the slowest model (PilotNet was fastest at 125Hz). This is not
surprising as it involves the most neural network layers. How-
ever, at 17Hz, it is still sufficiently fast for autonomous racing
in the game, especially given the stability and autonomous
racing performance of this method.

1/10 scale autonomous racing testbed: Additionally, we
conduct an offline evaluation of our Bèzier Curve Predictor
on a 1

10 -scale autonomous racecar (Figure 7[Top]). The Bèzier



Fig. 7. [Top]DeepRacing AI was implemented on a 1/10 autonomous racing
testbed using ROS. [Bottom] The ground-truth waypoints and predicted
B‘ezier Curve next to sample images from the testbed.

Curve Predictor was trained on a set of 15000 images taken
from a webcam attached to the front of the racecar while
an expert driver drove the car around a track. We then train
the Bezier curve trajectory predictor on a randomly selected
13500 of these images for 200 epochs, with the remaining
1500 images reserved for offline validation. After training
was complete, we evaluate the trained model with the RMSE
between the predicted Bèzier Curve and the ground-truth
waypoints for an image sequence ending in each of the unseen
images. the Bèzier Curve Predictor achieved an RMSE value
of 0.045. Figure 7[Bottom] shows some example images and
the corresponding predicted Bèzier Curves.

VII. CONCLUSION AND FUTURE WORK

We present DeepRacing - a novel end-to-end framework,
and a virtual testbed for training and evaluating algorithms
for the hard challenge of autonomous racing. We also develop
and present a new parametrized trajectory-based end-to-end
learnable network for autonomous racing which uses Bézier
Curves. It outperforms traditional end-to-end networks by a
significant margin and outperforms waypoint-based planning
by ∼ 5 seconds in terms of lap time and by over 100% in
terms of time between failures, all while being robust and
computationally tractable. The results and the work so far
has focused on autonomous racing in a time-trial manner, i.e.
only one vehicle on the track at a time. Our ongoing and
future work include a more focused study of head-to-head
racing (multi-agent setting) with a stronger focus on real-world
racing metrics like lap time and overall race position. We also
intend to explore and compare our method with reinforcement
learning based approaches for this problem.

REFERENCES

[1] Global championship of driverless cars. url=https://roborace.com/,
journal=Roborace.

[2] Trent Weiss and Madhur Behl. Deepracing: A framework for agile
autonomy. Design, Automation and Test in Europe Conference, 2020.

[3] M. Bojarski, P. Yeres, A. Choromanska, et al. Explaining how a deep
neural network trained with end-to-end learning steers a car. CoRR,
abs/1704.07911, 2017.

[4] Jung Leng Foo, Jared Knutzon, Vijay Kalivarapu, James Oliver, and
Eliot Winer. Path planning of unmanned aerial vehicles using b-splines
and particle swarm optimization. Journal of aerospace computing,
Information, and communication, 6(4):271–290, 2009.

[5] Maxim Likhachev and Dave Ferguson. Planning long dynamically
feasible maneuvers for autonomous vehicles. The International Journal
of Robotics Research, 28(8):933–945, 2009.

[6] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. The DARPA urban
challenge: AV in city traffic, volume 56. springer, 2009.

[7] Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, and Lipika
Deka. Real-time motion planning methods for autonomous on-road
driving: State-of-the-art and future research directions. Transportation
Research Part C: Emerging Technologies, 60:416–442, 2015.

[8] Scott Pendleton and Hans et al. Andersen. Perception, planning, control,
and coordination for autonomous vehicles. Machines, 5(1):6, 2017.

[9] Matthew Johnson-Roberson, Charles Barto, Rounak Mehta, Sharath Nit-
tur Sridhar, Karl Rosaen, and Ram Vasudevan. Driving in the matrix:
Can virtual worlds replace human-generated annotations for real world
tasks? arXiv preprint arXiv:1610.01983, 2016.

[10] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun.
Playing for data: Ground truth from computer games. In European
Conference on Computer Vision, pages 102–118. Springer, 2016.

[11] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing
car simulator. http://torcs. sourceforge. net, 4:6, 2000.

[12] Ana I. Maqueda, Antonio Loquercio, Guillermo Gallego, Narciso N.
Garcı́a, and Davide Scaramuzza. Event-based vision meets deep learning
on steering prediction for self-driving cars. CoRR, abs/1804.01310,
2018.

[13] Tharindu Fernando, Simon Denman, Sridha Sridharan, and Clinton
Fookes. Going deeper: Autonomous steering with neural memory
networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 214–221, Hawaii Convention Center HI, 2017.

[14] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to
forget: Continual prediction with lstm. 1999.

[15] Hesham M. Eraqi, Mohamed N. Moustafa, and Jens Honer. End-to-end
deep learning for steering autonomous vehicles considering temporal
dependencies. CoRR, abs/1710.03804, 2017.

[16] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving.
In ICCV, December 2015.

[17] F. Altché and A. de La Fortelle. An lstm network for highway trajectory
prediction. In 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), pages 353–359, Oct 2017.

[18] Eslam Mohammed, Mohammed Abdou, and Omar Ahmed Nasr. End-
to-end deep path planning and automatic emergency braking camera
cocoon-based solution. In Machine Learning for Autonomous Driving,
NeurIPS 2019 Workshop, December 2019.

[19] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Learning by cheating, 2019.

[20] Mayank Bansal, Alex Krizhevsky, and Abhijit S. Ogale. Chauffeurnet:
Learning to drive by imitating the best and synthesizing the worst. CoRR,
abs/1812.03079, 2018.

[21] Jeff Michels, Ashutosh Saxena, and Andrew Y. Ng. High speed obstacle
avoidance using monocular vision and reinforcement learning. ICML
’05, page 593–600, New York.

[22] Max verstappen trains using sim racing. Redline UK, 2017.
http://www.teamredline.co.uk/work/max-verstappen/.

[23] Richard S Wallace, Anthony Stentz, Charles E Thorpe, Hans P Moravec,
William Whittaker, and Takeo Kanade. First results in robot road-
following. In IJCAI, pages 1089–1095. Citeseer, 1985.

[24] Lu Chi and Yadong Mu. Learning end-to-end autonomous steering
model from spatial and temporal visual cues. In Proceedings of the
Workshop on Visual Analysis in Smart and Connected Communities,
VSCC ’17, pages 9–16, NY, USA, 2017. ACM.


