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A B S T R A C T

Active stormwater control will play an increasingly important role in mitigating urban flooding, which is be-
coming more common with climate change and sea level rise. In this paper we describe and demonstrate
swmm_mpc, software developed for simulating model predictive control (MPC) for urban drainage systems using
open source software (Python and the EPA Stormwater Management Model version 5 (SWMM5)). Swmm_mpc
uses an evolutionary algorithm as an optimizer and supports parallel processing. In the demonstration case for a
hypothetical, tidally-influenced urban drainage system, the swmm_mpc control policies for two storage units
achieved its objectives of 1) practically eliminating flooding and 2) maintaining the water level at the storage
units close to a target level. Although the current swmm_mpc workflow was feasible for a simple model using a
desktop PC, a high-performance computer or cloud-based computer with more computational cores would likely
be needed for most real-world models.

1. Introduction

Researchers have predicted that storm intensity will increase on
average due to climate change (Berggren et al., 2012; Neumann et al.,
2015). Coastal cities have an additional challenge as sea levels rise,
which makes it more difficult to drain storm runoff from streets. Coastal
cities have already experienced increased flooding from high tidal
events alone (Sweet and Park, 2014).

More intense storms and rising sea levels will put greater stress on
urban drainage systems necessitating changes for urban drainage sys-
tems to perform at current levels. One possible adjustment is to make
capital improvements such as increasing pipe size or constructing new
storage units. Another option is to convert drainage systems from pas-
sive, gravity driven systems to active or “smart” systems (Kerkez et al.,
2016). Active systems can increase performance of a urban drainage
system at a lower cost than traditional capital improvements (Meneses
et al., 2018). Actively controlling an urban drainage system does not
increase the actual capacity of urban drainage infrastructure, but rather
more efficiently uses the existing infrastructure, increasing its effective
capacity. For example, one part of an active urban drainage system
could be a valve at the outlet of a retention basin which can be

automatically opened or closed based on system conditions and fore-
casts. With this setup, the valve could be closed more during a storm,
which would utilize the available storage better than would have been
possible without the valve.

For an active urban drainage system to achieve its objective (e.g.,
minimize flooding, reduce combined-sewer overflows), an effective
management strategy is required. Management decisions for an urban
drainage system include which actuators (e.g., valves and pumps) in the
system should change, when to change them, and to what setting they
should be changed. These decisions are referred to as a control policy
(Vrabie et al., 2009; Mayne et al., 2005; Langson et al., 2004). An ef-
fective control policy for an active urban drainage system may depend
on a number of factors such as antecedent moisture conditions, ex-
pected intensity and duration of oncoming rainfall, current water levels
in the system, the condition of the drainage infrastructure, and other
factors (e.g., tide levels in tidally influenced urban drainage systems).

A common approach for determining an effective control policy is
model predictive control (MPC) (Camacho and Bordons, 2007). MPC
has been used effectively in many control applications including auto-
motive controls (Del Re et al., 2010), HVAC (heating, ventilation, and
air conditioning) (Afram and Janabi-Sharifi, 2014), and other industrial
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applications (Qin and Badgwell, 2003). MPC has also been used effec-
tively in urban drainage applications (Lund et al., 2018; Puig et al.,
2009; Cembrano et al., 2004; Schütze et al., 2004; Gelormino and
Ricker, 1994). In MPC, a process model is used to simulate the physical
system and evaluate alternative control policies. Forecast data can be
used as input for the simulation. During the control period, on-line
optimization is performed, meaning that an optimal control policy is
found and implemented at each time step (Camacho and Bordons,
2007).

Although capable of finding effective control policies, implementing
MPC for a urban drainage system is non-trivial due to the dynamics
within the system. The fundamental governing equations for modeling
urban drainage systems are the St. Venant equations which, when
considered fully, are non-linear (Tayfur et al., 1993). This makes
finding an optimal control policy for urban drainage systems challen-
ging using MPC (Darsono and Labadie, 2007). To address this dilemma,
two alternative approaches are typically employeed. The first is to
simplify the governing equations of the process model to a linear
system. This makes the optimization problem solvable using well-es-
tablished procedures such as simplex (Nelder and Mead, 1965).
Gelormino and Ricker (1994) took the approach of linearizing their
system, converting their process model into a linear-time-invariant
model to perform MPC for a large combined sewer system in Seattle,
Washington USA.

The second approach for implementing MPC for urban drainage
systems is to retain the non-linear St. Venant equations and use a me-
taheuristic to find the best control policy at each time step. In this
approach, a true optimization procedure is not possible because the
system remains non-linear; instead, a metaheuristic (e.g., an evolu-
tionary algorithm (EA)) can be used (Gandomi et al., 2013). The use of
a metaheuristic precludes the possibility of determining a guaranteed
optimal control policy and is typically computationally expensive. The
advantage of this approach, however, is that the non-linear governing
equations in the process model are retained. This approach was taken
by Heusch and Ostrowski (2011) who used a dynamically dimensioned
search for finding the best control policy. For their process model, they
used the United States Environmental Protection Agency's Stormwater
Management Model Version 5 (EPA-SWMM5), which numerically
solves the St. Venant equations (Huber et al., 2005). Similar to Heusch
and Ostrowski (2011), we have selected to follow the second approach
so that the nonlinearities in the process model can be maintained, and
to leverage EPA-SWMM5 as the process model.

EPA-SWMM5 is an attractive choice as a process model for urban
drainage systems for several reasons. EPA-SWMM5 is in the public
domain making it free of charge and its source code is open-source
making it customizable. The model simulates a wide variety of urban
drainage structures including active controls such as orifices with
variable openings and pumps. EPA-SWMM5 has been used in many
research applications, as well as in engineering practice, to model urban
drainage systems (Burger et al., 2014). Notwithstanding the wide use
and utility of EPA-SWMM5 for modeling urban drainage systems, and
the established utility of MPC as a successful approach for determining
effective control policies, to our knowledge, there is currently no soft-
ware available for performing MPC using EPA-SWMM5. Although
Heusch and Ostrowski (2011) developed software that implements MPC
with EPA-SWMM5, that software was closed-source and is no longer
available.

This study advances the work done by Heusch and Ostrowski (2011)
by creating open-source software for simulating MPC for EPA-SWMM5,
swmm_mpc, and by demonstrating swmm_mpc's parallel computing
capabilities. By making swmm_mpc open source, other researchers will
be able to use, improve, and build from the source code. Although, the
software written by Heusch and Ostrowski (2011) supported the use of
parallel computing, this capability, which is critical to the usability of
such software given its associated computational costs, was never de-
monstrated or tested in the literature.

The swmm_mpc software was written in the Python programming
language. Several third-party Python packages were necessary for the
success of this project including pyswmm (https://github.com/
OpenWaterAnalytics/pyswmm) and the Distributed Evolutionary
Algorithms for Python (DEAP) (https://github.com/DEAP/deap). To
evaluate swmm_mpc, it was applied to a demonstration model with two
simulated active control devices. The demonstration model was a hy-
pothetical urban drainage system with a tidally-influenced tailwater
condition. This was chosen since coastal cities are becoming more at
risk of flooding and thus may have larger benefits from active controls.
The swmm_mpc results were compared to the results from a rules-based
approach and a scenario with no active control. The software was run
on a desktop personal computer (PC), a high-performance computer
(HPC), and a rented, cloud-based machine to demonstrate and test the
parallel processing capability of the software.

The remainder of this paper describes the methods used to imple-
ment swmm_mpc including a description of the MPC workflow and the
interaction and role of the third-party Python libraries. The use case
model is then described and the results of the evaluation are presented
and discussed. As part of the results and discussion, the benefits of
parallelization and the use of a high-performance and cloud-based
computing for running swmm_mpc are quantified and discussed.

2. Methods

2.1. Overview of MPC for urban drainage systems

MPC for an urban drainage system consists of three main compo-
nents as shown in Fig. 1. The first component is the physical system,
including the system states and system controls. The system states in-
clude hydraulic states such as water levels at nodes and flow rates in
pipes, and hydrologic states such as watershed soil moisture and runoff.
In a real system, these states would ideally come from real-time sensors.
The system controls are actuators that accept and implement the set-
tings resulting from the MPC process at each time step.

The second component in MPC is a process model used to simulate
the future states of the urban drainage system. The process model uses
the states read from the urban drainage system as its initial states. The
process model also takes forecast model inputs such as rainfall or tide
level. Given the current state of the system and future disturbances, the
process model is used to evaluate the effectiveness of control policy
candidates.

A control policy consists of one setting for each actuator, for each
control time step, for the duration of the control horizon (the length of
time over which control settings are found). An individual setting can
be a number, as would be the case for a valve where the number would
correspond to the percent open of the valve. An individual setting can
also be a binary setting as would be the case for a pump that can either
be on or off. As an example, consider a system with a variably opening

Fig. 1. Main components of MPC in swmm_mpc system.
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valve and an on-off pump with a control horizon of one hour and a
control time step of 15min. A control policy for this system would
consist of two arrays, an array of numbers between 0 and 1 to specify
the percent open that the valve should be, and an array of “on” or “off”
to specify the setting of the pump. Both arrays would have four settings
(one for each time step in the control horizon of one hour).

To evaluate the effectiveness of a given control policy, the settings
in the policy are applied to simulated actuators in the process model
and the process model simulation is executed. At the end of the simu-
lation, a cost is determined for the policy. The cost is based on a user-
defined cost function. In this study, we consider mainly the cost re-
sulting from flooding but other costs could be considered within this
general framework including the costs of combined sewer overflows
(CSO) and water quality. The cost may also be a factor of other process
model outputs such as deviation from target water levels at certain
points (Schütze et al., 2004). The third component of MPC for a urban
drainage system is an optimization routine to determine the best con-
trol policy for the system. Using the process model to assign a cost to a
given control policy, the optimization procedure seeks to find the
control policy that incurs the smallest cost. If the process model is
linear, a true optimum can be found using traditional optimization
procedures like simplex (Nelder and Mead, 1965). If the process model
is non-linear, other approaches must be taken such as using a meta-
heuristic to find an effective control policy (Gandomi et al., 2013).

In summary, the chronological workflow for MPC for a urban
drainage system is: 1) system states are read from the physical system,
2) using the system states as initial conditions and future disturbances
as input, a process model is used to evaluate control policies, 3) the best
control policy is selected through an optimization procedure, and 4) the
best control policy is implemented in the real system. Although the best
control policy is obtained for the entire control horizon, only the first
step in the control policy is used since the procedure re-optimizes at
every control time step.

2.2. MPC for SWMM5: swmm_mpc

Implementation of the parts of MPC using Python and SWMM5 was
done in the swmm_mpc Python package. The software simulates online
MPC for an urban drainage system using SWMM5 as the process model
and as the simulated physical system. The current system could also be
used in an offline mode to find a control policy for a forecast storm
event beforehand.

2.2.1. Simulated urban drainage system: OWA-SWMM5 and pyswmm
In swmm_mpc an enhanced version of SWMM5, OWA-SWMM5

(https://github.com/OpenWaterAnalytics/Stormwater-Management-
Model), was used via an accompanying Python library, pyswmm
(https://github.com/OpenWaterAnalytics/pyswmm), to simulate the
physical urban drainage system. Both OWA-SWMM5 and pyswmmwere
developed and are distributed by Open Water Analytics.

OWA-SWMM5 and pyswmm provide three key functionalities
needed to simulate the online optimization procedure required by MPC.
First, unlike when a simulation is run via EPA-SWMM5, when using
pyswmm, custom Python routines can be executed between each time
step of the simulation. This is critical to swmm_mpc because at each
time step in the MPC simulation workflow three processes occur: 1) the
states from the simulated urban drainage system are read and trans-
ferred to the process model; 2) the metaheuristic is run; and 3) the best
policy found by the metaheuristic needs is implemented in the simu-
lated urban drainage system. Using pyswmm, Python code can be run to
perform each of these processes at each control time step.

Second, pyswmm enables the transfer of system states at each time
step from the simulated urban drainage system to the process model.
This is accomplished through a hotstart file. A SWMM5 hotstart file
contains all of the hydraulic and hydrologic states of the model at the
time in the simulation when the hotstart file is saved. When a hotstart

file is read into a simulation, that simulation's initial hydraulic and
hydrologic states are the states represented in the hotstart file. This
functionality is well-suited to transfer the states of the simulated urban
drainage system to the process model in the swmm_mpc workflow.

Using EPA-SWMM5, a hotstart file can be saved only at the end of a
simulation. This is a critical limitation because in MPC the system states
need to be transferred at every time step. To address this limitation, we
added new functionality to OWA-SWMM5 and pyswmm to enable
hotstart files to be saved at any point in a SWMM5 simulation executed
using pyswmm. This functionality allowed the system states of the si-
mulated urban drainage system to be transferred to the process model
at each time step.

Third, through pyswmm the best control policy found by the me-
taheuristic can be implemented at each time step. This is done using
pyswmm to change the settings of the actuators in the model during the
simulation. When a simulation is initialized in pyswmm, each object in
a SWMM5 model (every node, link, subcatchment, etc.) can be read into
a Python object via its element ID as defined in the SWMM5 input file.
Each of these Python objects has attributes that can be read (e.g., depth
at a node and flow in a link). Actuators in the model read into Python
objects also have the “target_setting” attribute that can be assigned. To
implement a control setting for an actuator via pyswmm, its “target_-
setting” is set to the first setting in the best control policy.

2.2.2. Process model: EPA-SWMM5
In addition to representing a real urban drainage system, SWMM5

was used as the process model. However, in contrast to using OWA-
SWMM5 to simulate the physical urban drainage system, the standard
EPA-SWMM5 was used as process models. This was necessary because
the current version of pyswmm is not thread-safe. This is a functionality
needed in swmm_mpc because at each time step during the simulation
of the urban drainage system, at least one process model simulation is
run in a predictive fashion to evaluate control policy candidates. EPA-
SWMM5, unlike pyswmm, is thread-safe.

2.2.3. Active controls in EPA-SWMM5
EPA-SWMM5 simulates the active control of certain hydraulic

structures including pumps, orifices, and gates. Each of these structures
has a setting that can be assigned. For example, the setting for an orifice
is a decimal number between 0 and 1 which corresponds to the percent
open of the orifice (e.g., a 0.5 setting would mean the orifice was 50%
open). The user can also define an amount of time for a structure to
implement a change in setting. This “time to change” parameter in EPA-
SWMM5 represents the delay seen in reality for changing an actuator's
setting.

Changing controls during an EPA-SWMM5 simulation is done using
one or more control rules (see example in Fig. 2). A control rule is
specified in the SWMM5 input file before the simulation begins and
consists of four parts. The first two parts are the rule name and the
condition. In the example, the rule name is “R1”. The condition is “IF
NODE J1 DEPTH<2”, meaning that the program will check if the
depth at the node with the ID of “J1” is less than 2 (the units being
defined globally in the model input file as feet or meters). In EPA-
SWMM5 the condition can be the state at any link or node and can also
be related to global simulation states such as the model simulation time.
The third part of a control rule defines which structure(s) should change
if the specified condition is met. In the example the structure that will
change is “ORIFICE R1”. Finally, the fourth part of the rule defines the
setting to which the structure should change. In the example, this is
“0.6,” meaning that if the condition is met, the orifice should be set to

Fig. 2. Example of a control rule in SWMM5.
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60% open.
In swmm_mpc a control policy is a time series of control settings

(one control setting per control time step for the control duration). This
is implemented in EPA-SWMM5 as a set of control rules. Since a control
policy in MPC is a time series, each control rule's condition is based
solely on the model's simulation time in decimal hours. For example,
Fig. 3 shows a control policy of four settings (0.2, 0.4, 0.5, and 0.2) for
“ORIFICE R1” at a 15-min control time step implemented as control
rules. This text would be written to the EPA-SWMM5 process model
input file under the “CONTROLS” heading.

2.2.4. Metaheuristic: evolutionary algorithm
Because we used EPA-SWMM5 as a black-box process model, a

metaheuristic was used in place of a true optimization procedure to find
an effective control policy at each time step in the MPC run. We chose
an evolutionary algorithm (EA) for the metaheuristic since it has been
shown to be successful in other urban drainage control applications
(Zimmer et al., 2015, 2018) and it's inherent propensity for paralleli-
zation Maier et al. (2014). An EA begins with an initial population of
individuals where, in our case, each individual is a control policy. A
fitness score (or conversely a cost) is assigned to each individual in the
population and certain individuals are selected to survive into the next
generation based on their fitness score. Mechanisms for improving the
fitness of the individuals from one generation to the next mimic natural
processes including cross-over and mutation (Maier et al., 2014). The
process of selection and improvement is repeated from generation to
generation until a stopping criteria is met. Common stopping criteria
include a user-defined number of generations or an acceptably low rate
of improvement from one generation to the next. The use of an EA
requires several user-defined parameters including the number of in-
dividuals in the initial population, the cross-over rate, the mutation
rate, and the stopping criteria.

In swmm_mpc, policies are transcribed to a string of bits in the
genetic algorithm. The settings for orifices and weirs are represented by
three bits with eight total possibilities (0/8 open, 1/8 open, …, 8/8
open). We limited the settings of orifices and weirs to three bits to limit
the solution space explored by the algorithm. The setting of a pump is
represented by only one binary digit (1 or “ON”, 0 or “OFF).

Since the EA searches for the policy that incurs the minimum cost,
the way in which a cost is assigned to each individual control policy has
a large impact on the EA's effectiveness. In swmm_mpc, the cost of a
control policy is determined using the process model and a cost func-
tion. First, each individual control policy is implemented in the process
model input file as a set of control rules as described above. Once the
control policy is implemented, the EPA-SWMM5 model is executed.
Elements of the model output resulting from the process model ex-
ecution become input for the cost function (Eqn 1). The cost function
used in swmm_mpc is

Cost=α(a⋅v(u,x))+β(b⋅d(u,x)) (1)

where a, v, b, d are each 1-dimensional vectors, u and x are 2-di-
mensional vectors, and α and β are scalers. The members of a are user-
defined weight values for flooding at any node in the system and the
members of v are the flood volumes at each node over the entire si-
mulation as calculated by the process model. The members of b are
user-defined weights for deviation from user-defined target water levels
at each node in the system and the members of d are the average ab-
solute deviations from target water levels again as calculated by the
process model over the entire simulation. u is represents the control
policies for all controls, for each time step. x represents the system
states. α, and β, are user-defined constants used to scale and give
overall weights to flooding costs compared to deviation costs. Typically
weights for the components of the cost (or objective) function sum to 1
and can include a scaling factor to account for variables in different
units or scales (Kim and de Weck, 2005). In this formulation, α and β
include both the weight and the scaling factors for the objectives.

We intentionally made this cost function flexible so that users can
customize it to meet their objectives which may vary between use cases.
A cost for flooding is obviously important as that is a major concern for
many communities and the prevention of which is one of the main
purposes for urban drainage systems. We also included a cost from
deviations for target water levels because, in certain cases, it is desir-
able to maintain water levels close to a target depth. For example, it
may be important to keep a certain amount of water in a retention pond
for aesthetic and/or ecological purposes. More components to the cost
function could be added by users according to their needs, such as
water quality parameters. Although the cost function is flexible, when
implemented in swmm_mpc, the user need only define what is im-
portant to the specific application. For example, default for a is a vector
of all 1's. When one node is specified, the weight of any unspecified
node becomes zero. The default for b is all zeros, since the user has to
specify a target depth for a given node.

To execute EAs we used the Distributed Evolutionary Algorithms for
Python (DEAP)(https://github.com/DEAP/deap) library. An advantage
of EAs is that they can easily be run in parallel since they perform many
independent evaluations (Maier et al., 2014). In DEAP, parallel pro-
cessing is supported through integration with the built-in “multi-
processing” Python library. Through the "multiprocessing" library, users
can specify how many computational cores should be used to distribute
the evaluation of the individual control policies in each GA generation.

2.2.5. swmm_mpc workflow
The MPC workflow in swmm_mpc was implemented using three

main Python functions (see Fig. 4). The function in the workflow called
by the user is “run_swmm_mpc.” This function runs the MPC workflow
and calls the two other main functions. “run_swmm_mpc” takes 13 user
inputs as shown in Table 1. Through these inputs, the user specifies the
model input file that represents the urban drainage system, the control
inputs (i.e., which controls to find a policy for, the control time step,
and the control horizon), and EA parameters (e.g., number of genera-
tions, cost function parameters).

The most complex of the user-supplied arguments are “target_-
depth_dict” and “node_flood_wgt_dict” (see Fig. 5 for examples). These
two arguments define the a and b variables in the cost function. Ad-
ditionally, the “target_depth_dict” argument is used to determine d.
These arguments map from Python data structures to the mathematical
variables in the cost function. The “target_depth_dict” argument is a
dictionary whose keys are node ids and whose values are dictionaries.
The inner dictionary has two keys:the target depth of the node and the
weight of the cost for deviations from the weight at the node. In Fig. 5,
the “target_depth_dict” specifies that the target depths of Nodes St1 and
St2 are 4.0 and 3.5, respectively. The weights are also specified: de-
viation from the target depth at Node St1 will be twice as costly as
deviation from Node St2. The “node_flood_wgt_dict” is a simpler dic-
tionary, the keys of which are node ids and the values are weights. In
Fig. 5, the “node_flood_weight_dict” specifies that flooding at Node J1 is

Fig. 3. Example implementation of control policy as set of control rules.
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five times costlier than flooding at Node St1. Note that if one or more
node is included in the “target_depth_dict” or the “node_flood_wgt_dict”,
other nodes are not included in the cost calculation (in terms of the cost
function, the corresponding weights in a and b are zero). This is shown
in Fig. 5, the weight of deviations from a water level at Node J1 and the
weight of flooding at Node St2 would both be zero since they are not
included in the dictionaries.

In the “run_swmm_mpc” function, the SWMM5 model simulating

the urban drainage system is run step by step via pyswmm. At the be-
ginning of the simulation, the SWMM5 input file representing the urban
drainage system is copied. This copy serves as the input file used for the
process model. To ensure that the states and simulation periods of
process model remain in sync with the simulated urban drainage
system, at each time step a hotstart file from the urban drainage system
simulation is saved and then used as the initial states for the process
model. The process model's simulation start date and time are also

Fig. 4. Activity diagram of MPC implementation using Python.

Table 1
User inputs for “run_swmm_mpc” function.

Parameter name Data type Description Default value

inp_file_path String File path to SWMM5 input file (.inp) N/A
control_horizon Number Control horizon in hours N/A
control_time_step Number Control time step in seconds N/A
control_str_ids List of strings IDs of control structures to be adjusted N/A
work_dir String Path to directory where temporary files will be stored N/A
results_dir String Path to directory where results should be stored N/A
target_depth_dict Dictionary IDs of nodes and corresponding target depths and relative penalty weights Null
node_flood_weight_dict Dictionary IDs of nodes and corresponding relative penalty weights for flooding Null
flood_weight Number Overall weight of flood penalties 1
dev_weight Number Overall weight of deviation penalties 1
ngen Number Number of individuals in initial GA population 100
run_suffix String suffix to be appended to results file “”
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updated to match the urban drainage system simulation's current date
and time.

Once the process model's simulation start date and time is same as
the simulated urban drainage system and the hotstart file of the simu-
lated urban drainage system is saved, the “run_ea” function is called.
The “run_ea” function initiates the EA which starts by creating an initial
population of individual control policies. In our case, an individual is a
1-dimensional vector, each member of which is a setting for an in-
dividual actuator for one control time step.

The initial population for the first time step is a group of random
individuals. For subsequent time steps, elitism is used where the best
policy found in the previous time step is used to seed the initial po-
pulation of the current time step. For example, consider a control policy
for i control time steps for j controls represented by a i x j vector, u. For
the first time step, the settings for time 0 through time i are found
however, only the first setting is implemented. Because settings that
minimize cost for times 1, 2, …i have also been found by the optimizer,
in swmm_mpc, these settings are used as the basis for seeding the po-
pulation for the next time step. This base individual is then varied
randomly to create several similar individuals. Some randomly created
individuals are also added to the population for the next generation to
create variety in the policies and to ensure the number of policies is
equal to the initial population size specified by the user.

The control policies initiated in the “run_ea” function are input into
the third main function: “evaluate”. The evaluate function makes a copy
of the process model input file and the input hotstart file. To avoid file
naming conflicts, a random string is appended to the hotstart and input
file names. The control policy is then implemented in the newly created
input file by adding corresponding control rules. Once the control
policy is implemented in the input file, the simulation is executed with
EPA-SWMM5. When the simulation run is completed, the “evaluate”
function parses the output file to determine v and d in the cost function.
The policy's cost can then be determined since the remaining cost
function parameters (α, a, β, and b) are user-defined. The evaluation of
an individual control policy is independent of all others, therefore, the

“evaluate” function is the part of the workflow that is parallelized
through Python's “multiprocessing” module.

Using the cost that has been assigned to each policy, the “run_ea”
function selects the best individuals to retain in the population of po-
licies for the next generation. After the user-defined number of gen-
erations are complete, the best policy found by the EA is implemented
in the simulated urban drainage system in the “run_swmm_mpc” func-
tion. The policy is also saved and used to seed the population of the next
time step. Finally, the setting for that time step is recorded so that at the
end of the simulation, the best control policy for the entire simulation
time is saved. If the cost at a time step is ever zero, the algorithm stops
since the performance cannot improve further.

2.3. System demonstration

To demonstrate the utility and functionality of swmm_mpc, three
cases (A, B, and C) with increasing complexity were implemented in a
simple SWMM5 model. Three control scenarios (passive, rules-based,
and MPC) were applied to each of the cases. The computational costs of
running swmm_mpc were also quantified.

2.3.1. Demonstration model and rainfall event
A schema of the model used to demonstrate swmm_mpc is shown in

Fig. 6 and the model properties are given in Table 2. Since the intent of
this portion of the paper is to offer a simple example application the
software, a simple demonstration model was used. However, any
SWMM5 model with controllable features can be used with swmm_mpc.

The demonstration model has two subcatchments, S1 and S2. For
the example use case, we used a 1-year, 12-h design storm for Norfolk,
Virginia, a coastal city that experiences frequent flooding (Mitchell
et al., 2013). The design storm (see Fig. 7) had 78.2mm of total rainfall
(Bonnin et al., 2018) with an SCS Type II temporal distribution
(Mockus, 2012). The use of design storms is typical when designing and
modeling stormwater infrastructure (for example Villarreal et al.
(2004) and Hatt et al. (2009)). To introduce some spatial variation in

Fig. 5. Examples of “target depth dict” and “node
flood wgt dict”.

Fig. 6. Demonstration model schema.
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the model, the rain for S2 started 18min after the start of the rain event
for S1. S2 is smaller but flashier with a smaller width and a larger
percent of impervious surfaces. This is manifested in a higher peak flow
shown in Fig. 7.

The subcatchment S1 and S2 drain directly to two storage units in
parallel, St1 and St2, respectively. In SWMM5 models, storage units are
generic and are used to represent both natural storage facilities such as
a pond as well as man-made facilities such as an underground tank or
retention pond. Two orifices (R1 and R2) control the flow out of two
storage units. The two orifices from the storage units meet and flow
through a junction, J1, before leaving the system through the outfall.
The model simulation time was 24 h and the routing time step was ten
seconds in the MPC and passive scenarios and five seconds in the rules-
based scenario.

2.3.2. Demonstration cases
We implemented and compared the three control scenarios for three

use cases with different objectives and model constraints increasing in
complexity (see Table 3). In Case A, the simplest of the three cases, the
only objective was to minimize flooding. In Case B, an additional ob-
jective of maintaining a target water depth of 0.5 m at the storage units
was added. In Case C, the objective was the same as Case B, but a tidal
boundary condition at the outfall was added (see Fig. 8).

Since Cases B and C are multi-objective, α and β had to be selected
based on the relative importance and the relative scale of each. The
units of v were gallons in the SWMM5 demonstration model, much
smaller in magnitude in our case than the deviations from target water
levels which were in units of feet. To scale the two variables and em-
phasize minimizing flooding at Node J1 over minimizing deviations
from the target water depths at the storage units, we set the cost of
flooding, α, 2000 times larger than the cost of deviations, β (1000
compared to 0.5) for Cases B and C.

2.3.3. Control scenarios
2.3.3.1. Scenario 1: passive. In this scenario there is no active control.
The outlets are 100% open at all times. The system drains by gravity
alone; there are no orifices or pumps in the system.

2.3.3.2. Scenario 2: rule-based control. For this scenario, simple logical
rules controlled the orifice openings and therefore the discharge from
the storage units. In practice, such rules can be based on experience and
knowledge gained by local stormwater personnel over time. Although,
heuristic-based rules alter a dynamic, actuated system, the rules
themselves are static, meaning that they do not change for the
duration of an event. Furthermore, the rules do not adjust based on
forecast conditions. There were two sets of rules used in the
demonstration cases. For Case A, where the only objective was to
reduce flooding, the rules (see Fig. 9) specified to open the orifice
completely as long as the depth in the downstream node, J1 was below
0.49m (80% of the maximum depth). Additionally, to avoid
overtopping, if the storage units reached 1.49m (98% of the
maximum depth) the orifices were to open to avoid overtopping of
the storage units. The rules for Cases B and C were the same. These rules
(see Fig. 10) were similar to the Case A rules, however, in addition to
reducing flooding, the rules for Cases B and C also took into account the
target depth of 0.52m. In these rules the orifices were open when the
depth at Node J1 was below 0.49m and when the depth in the storage
units was above the target water depth. The orifices were closed when
the depth at Node J1 was above 0.49m or when the depth in the
storage units was below the target depth. The control rules scenarios for
each case were run via pyswmm with a control time step of 5 s.

2.3.3.3. Scenario 3: MPC. The MPC control policy was found using
swmm_mpc as described in Section 2.2.5 above. One advantage of MPC
over the rule-based control is the ability to adjust the actuators based on
forecast conditions. For the use cases, we used a control time step of
15min and a control horizon of one hour. Therefore, with two controls,
a single control policy consisted of a vector of eight values (2 controls x
4 control steps per hour x 1 h) (see Table 4). The number of individuals

Table 2
Properties of demonstration model.

Subcatchment Properties
Name Area (hectares) Width (km) Slope (%) Impervious (%)

S1 32 0.46 0.5 30
S2 20 0.61 0.5 45

Storage unit properties
Name Surface Area (sq

m) (constant)
Initial Depth
(m)

Max Depth (m) Bottom Elev.
(m)

St1 6039 0.5 1.5 0.91
St2 4645 0.5 1.5 0.91

Pipe properties
Name Length (m) Diameter (m) Roughness

C1, C2 122 0.3 0.01

Node properties
Name Max depth (m) Bottom Elev.

(m)

J2 1.5 0.91
J1 0.6 0.3
Outfall N/A 0

Orifice properties
Name Height (m) Discharge

Coeff.

R1, R2 0.61 0.65

Fig. 7. Design storm input to use case study.

Table 3
Differences in MPC cost function parameters between test cases.

Cost function parameter (description) Case A Cases B & C

α (overall flood weight) 1 1000
a (individual node flood weight [St1, St2, J1,

J2])
[1, 1, 1, 1] [1, 1, 1, 1]

β (overall deviation weight) 0 0.5
b (individual deviation weight [St1, St2, J1,

J2])
NA [1, 1, 0, 0]

(target depths (m) [St1, St2, J1, J2]) NA [0.5, 0.5, NA, NA]
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for the initial population of policies in the genetic algorithm was 120
and the number of generations was 8.

2.3.4. Use of parallel, high-performance, and cloud computing
The EA used for selecting the best control policy is computationally

expensive and, therefore, some analysis of computational costs for ex-
ecuting the swmm_mpc workflow was performed. The wall-clock times
for Case A (the more complex of the two cases) were compared when
using a typical personal computer (PC) and the University of Virginia's
high-performance computing (HPC) system, Rivanna. Recognizing that
many (likely most) municipalities will not have HPC resources available
to them, we also explored the use of a commercial cloud computing
service for running swmm_mpc. These services, such as Amazon Web
Services, Google Cloud Platform, or Microsoft Azure, allow users to rent
large, powerful computers, charging only for the time that the com-
puters are being used. To explore the option of renting a cloud-based
machine, we also executed Case A through Google Cloud Platform
(GCP). The number of cores available, RAM, and processor speeds of the
PC, HPC, and GCP machines are listed in Table 5. Case A was run with a
varying number of cores on each platform.

3. Results and discussion

3.1. Results from demonstration cases

Figs. 11–13 show the results of the three control scenarios applied to
the three demonstration cases. In all cases, Cases A, B, and C, there are
times where flooding occurred at one or more nodes. Flooding occurs in
SWMM5 when the depth of water at a given node exceeds the maximum
depth of that node. When this occurs, the depth in SWMM5 at that node
is recorded as the maximum depth, which is why some of the depth
values in Figs. 11–13 appear capped.

Fig. 11 shows the results from the three control scenarios for Case A.
In the rules-based and MPC scenarios, the control policies kept the
valves closed more on average, thus retaining more water in the storage
units and preventing flooding at Node J1 (see Fig. 11 A and B). The
water level at St2 reaches much higher values in the rules-based and
swmm_mpc scenarios (peak of 1.16m (3.80 ft) and 1.14m (3.73 ft))
compared to the passive (peak of 1.05m (3.45 ft)). In Case A, the rules-
based control and the swmm_mpc scenario eliminated flooding alto-
gether. This was the simplest control case and the algorithm in
swmm_mpc was able to find a policy that eliminated flooding by hour 3.
This policy resulted in a cost function equaling zero which stopped the
algorithm from running. Therefore, after hour 4, the orifice settings
were unchanged in the swmm_mpc scenario. The rules-based scenario
in Fig. 11 causes oscillation around the 80% full depth at J1 (0.49) as a
result of the control rules.

For Case B, a target water depth at St1 and St2 of 0.52m was in-
troduced and the initial depth at St1 and St2 was 0.52m. With more
water in the system to begin with, much more flooding occurred in
general compared to Case A and neither the rules-based nor the
swmm_mpc control was not able eliminate flooding. The swmm_mpc
scenario, however, reduced flooding by 90% compared to the passive

Fig. 8. Tidal boundary condition at outfall used in Case C.

Fig. 9. Control rules for Case A.

Fig. 10. Control rules for Case B and C.

Table 4
Control parameters for demonstration cases.

Parameter Value

Control Horizon (hr) 1
Control Time Step (hr) 0.25
Num controls 2

Table 5
Specifications of computational resources used for demonstration model.

PC HPC GCP

Max. # cores 8 28 64 (tested up to 32)
CPU speed 3.60 GHz 2.4 GHz 2.0 GHz
Processor type Intel i7 Intel Xeon Intel Xeon
RAM 16 GB 128 GB 7–120 GB (depending on # of CPUs)
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scenario where the rules-based reduced flooding by only 54%. The
main reason for the better performance by the swmm_mpc scenario was
its ability to take action proactively and prioritize reducing flooding
over maintaining the target depth. The swmm_mpc algorithm allowed
the water level at St2 to go well below the target depth at the beginning
of the simulation to create more storage for when the peak of the runoff
arrived. Additionally, the swmm_mpc policy held more water back in
St1 than the rules-based scenario, more fully utilizing the storage
available in the larger of the two storage units. Because the rules in the
rules-based scenario maintained the water at the target depth in St2,
there was not enough storage available to handle the peak of the runoff
and the storage unit was overtopped.

The addition of the tidal boundary condition in Case C caused in-
creased flooding for all three control scenarios. Again, the swmm_mpc
was able to significantly reduce flooding, resulting in a 74% reduction
compared to the passive scenario. The swmm_mpc policy held even
more water back, and held it back for longer in St1 in Case C compared
to Case B. This reduced flooding in J1 during the second high tide
which occurred around 19 h. The swmm_mpc policy did not outperform
the rules-based scenario by as much as Case B - the rules-based scenario

reduced flooding by 58% in Case C. A possible explanation is that, with
the additional water volume from the tidal condition, the system may
be reaching its physical limits in terms of total available storage.

3.2. Computational cost of swmm_mpc

Fig. 14 shows the wall-clock times for executing swmm_mpc for
Case C on a PC, an HPC, and GCP machines with a varying number of
processing cores. The simulation had 96 control time steps (15min
resolution for 24 h). If used for online MPC in a real case, the wall-clock
time required for one time step would need to be less than the time step
itself, otherwise, the setting for the next time step would not be de-
termined before it would need to be implemented.

The fastest wall-clock time using the PC was 214.7min using eight
computational cores (the maximum available). Therefore the time re-
quired to find the best control policy at each control time step was
2.2 min. In this case, the PC's computing power was sufficient (2.2 min
per time step compared to 15min time step). For the HPC, the best case
scenario was a wall-clock time of 34.8 min (0.36min per time step)
using the maximum of 28 computational cores. Although the minimum
wall-clock time was achieved using all 28 cores on the HPC, the im-
provement in wall-clock time when increasing the number of cores past
16 was minimal. This is a relevant consideration when using a shared
HPC resource where requesting more computational cores likely cor-
responds to a longer wait in the job queue.

The wall-clock times using GCP were much lower than the PC or

Fig. 11. Depth and flooding at system nodes for Case A.

Fig. 12. Depth and flooding at system nodes for Case B.

Fig. 13. Depth and flooding at system nodes for Case C.

Fig. 14. Wall-clock run times for Case C with varying number of computational
cores using a PC and a high performance computer.
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HPC. In the best case, 32 vCPUs and 120 GB of RAM were used for a
wall-clock time of 25.6 min (0.27min per time step). This is a 1.3×
speed-up compared to the fastest run using the HPC and almost a 8×
speed-up compared to the fastest PC run. The financial cost of renting
this machine was $1.71 per hour. The GCP hardware is newer than the
HPC hardware which may explain why the wall-clock time is lower
even when the same number of computational cores was used.

3.3. Practical considerations

3.3.1. Computational costs
The execution times for our example use case were viable, however,

a more complex model, a smaller control time step, or different EA
parameters (more generations or individuals per generation) would
increase the execution time. For example, the demonstration SWMM5
model required only one second or less to execute. The swmm_mpc
workflow executed that model thousands of times. In our cases, the
model was run more than 70,000 times (24-h simulation x 4 time steps
per hour x 8 generations per time step x approx. 80 individuals per
generation) therefore requiring approximately 70,000 s of computation
time (if each model takes approx. 1 s to run). If a more sophisticated
SWMM5 model instance were used, the execution time would be much
higher. For example, in related research we are using a more complex
model of the stormwater infrastructure for a neighborhood in Norfolk,
Virginia that requires close to 60 s to execute for a 24-h simulation time
period. The wall-clock time for swmm_mpc for this more complex
model would increase by around a factor of 60 compared to the simple
cases demonstrated here. Assuming a linear increase, the wall-clock
time would be 132min/time step using the PC, thus rendering it un-
feasible for running on a PC. Again assuming linear scaling, using 32
cores on GCP, the same simulation would execute at a rate of 16.7 min/
time step, just over the 15min times step cutoff. To be feasible with this
setup, fewer generations or fewer individuals per generation would
have to be used to reduce the number of model runs per time step.
Alternatively, a reduced complexity model could be used to reduce the
SWMM5 runtime, as further discussed below.

Another factor to consider for practical use of swmm_mpc is the
control horizon and the number of control structures whose policies
will be found using swmm_mpc. These two parameters determine the
size of the overall control policy and therefore the solution space that
the EA will be searching. In our example use case, the control policy
was a vector of 24 bits. Therefore, there were possible solutions. This
solution space, already large, would double if the control time step were
7.5 min instead of 15, or if the control horizon were two hours instead
of one. A larger solution space would result in a larger computation
time to reach an effective solution.

Given the computational cost of the current swmm_mpc approach,
the required complexity (and thus the wall-clock time) of the process
model is an important consideration. A scenario with a simple process
model (approx. 1 s wall-clock time) can be feasibly executed with just a
PC, as shown in the system demonstration. However, a simple model
may not represent complex urban drainage systems well enough to
produce an effective control policy. Defining what level of detail is
sufficient in the process model may be difficult, however, as it may
depend on the objective of the modeling, a certain storm event, or the
system itself. There is a trade-off among 1) model complexity, 2) model
run time, and 3) the model's ability to effectively simulate the relevant
parts of the system to achieve a stated objective and support decision
makers. This trade-off is very significant to the use of process models in
a receding control horizon approach such as MPC and needs further
research.

If a more complex model is needed, municipalities or others needing
cloud-based resources to run swmm_mpc must consider the financial
cost of renting a machine. Using the 32-core machine on GCP, the cost
of finding the control policy for the 24-h time span in Case C in our
system demonstration was very low, $0.72. This was, however, for one

simple case. The cost would be higher with more complex scenarios
such as a more complex model, a shorter time step, or more controls. If
we assume the use of a more complex model, which takes 60 s to run,
would increase running time by a factor of 60, that would also increase
the cost by a factor of 60 to $43.78. However, the system would only
run if there were a storm in the forecast large enough to require active
control to mitigate. .

Given the computational cost of running the evolutionary algo-
rithm, other, more efficient alternatives should be explored in future
research. One possible alternative that is reinforcement learning
(Kaelbling et al., 1996). This approach may be able to converge to a
solution more quickly than an evolutionary algorithm and thus reduce
run times and computational. Another future improvement could be
adding a penalty to changing actuator states and/or using another dy-
namic optimizer to have a less erratic behavior in the actuators.

3.3.2. Data and modeling uncertainty
The current design of swmm_mpc does not take into account the

uncertainties in the system states, the forecast data and the process
model. Because the SWMM5 engine is used to simulate both the urban
drainage system and the process model, the process model assumes 1)
perfect knowledge of the urban drainage system states, 2) perfect
knowledge of future disturbances, and 3) perfect modeling of the urban
drainage system. In a real implementation, there would be significant
uncertainties in each of these aspects. In a real implementation,
knowledge of the system states is available only from a limited number
of sensors in the system. This data, limited in spatial and temporal re-
solution, would need to be estimated using a state estimator to set all
the states in the system as is done in power systems (Abur and Expósito,
2004). More work will need to be done to investigate ways of in-
corporating sensor values to set the process model's initial conditions.
Additionally, in the current case, the future disturbances (i.e., primarily
rainfall) are known perfectly, when in reality, there is a large amount of
uncertainty involved with forecasting such disturbances (see for ex-
ample, Hong and Pai (2007), Valverde Ramírez et al. (2005), and Bellon
and Austin (1984) regarding uncertainty in forecasting rainfall).

In addition to data uncertainties seen in reality, swmm_mpc does
not currently consider gaps between the simulated behavior through the
SWMM5 process model and the actual behavior of the urban drainage
system, but assumes that simulation and reality are the same. In actu-
ality, the gap between simulation and reality in urban drainage systems
can be significant (see for example Mark et al. (2004)). On a related
note, the ability for swmm_mpc to find a control policy that is effective
for the urban drainage system is directly related to how well the process
model represents the system. Given the simulation and data gaps seen
in reality, the simulated results through policies found by swmm_mpc
should be considered as the best case scenario and if the same policies
were used in practice, any effects should be expected to be seen to a
lesser extent. Further research is needed to determine the degree to
which the results from the policies implemented in reality will differ
compared to the simulation results.

Swmm_mpc finds only the one best control policy which minimizes
a single cost value defined by a set of weights for various objectives.
This is also known as the weighted sum method for multi-objective
optimization (Marler and Arora, 2010). This method, has some dis-
advantages including the inability to explore the solutions that have
similar performance along the Pareto front (Das and Dennis, 1997).
Future work could be done in swmm_mpc to support the exploration of
Pareto optimal solutions and the trade-offs between objectives.

4. Conclusions

A free and open-source software package, swmm_mpc, was devel-
oped which computes a control policy for controls within an urban
drainage system model. The widely-used United States Environmental
Protection Agency Stormwater Management Model Version 5
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(SWMM5) is used to simulate the urban drainage system and as the
process model. A third-party Python library, pyswmm, is a critical
component of the swmm_mpc workflow allowing a SWMM5 model to
be run step-by-step in a Python environment. An evolutionary algo-
rithm was used to find an effective control policy at each time step.
When tested using a simple SWMM5 model, the swmm_mpc software
was able to produce control policies that met objectives including
minimizing flooding and minimizing deviation from target water levels
at certain nodes in the system.

Swmm_mpc leverages parallel computing to run the computation-
ally expensive evolutionary algorithm more quickly. The wall-clock
time for a simple SWMM5 model for a 24-h simulation was reduced
from 307min to 214min when the computational cores on a desktop
PC were increased from two to eight. The wall-clock time was reduced
even further to 34.8 min on a 28-core high-performance computer and
to 25.6min on a 32-core machine rented through the Google Cloud
Platform. Parallel computing will be necessary to make swmm_mpc
feasible for use in real-time control of a real-world drainage system with
complex process models.

As average storm intensity is projected to increase, and sea levels
are expected to continue to rise, cities globally, and especially on the
coasts, can expect more intense and frequent flood conditions. Active
control of urban drainage systems will be part of a portfolio of ap-
proaches used when confronting these challenges. The swmm_mpc
software we have developed can be used, built-from, and improved
upon as a tool to assist decision-makers and researchers in finding ef-
fective control policies for active control of urban drainage systems.

Software availability

The swmm_mpc software is open-source and available for use and
improvement on GitHub at https://github.com/UVAdMIST/swmm_
mpc. A Docker image of swmm_mpc is also available at https://hub.
docker.com/r/jsadler2/swmm_mpc/. The demonstration model is
published on HydroShare (Sadler, 2018).
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