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ABSTRACT
In 2005 DARPA labeled the realization of viable autonomous ve-

hicles (AVs) a grand challenge; a short time later the idea became

a moonshot that could change the automotive industry. Today,

the question of safety stands between reality and solved. Given the

right platform the CPS community is poised to o�er unique insights.

However, testing the limits of safety and performance on real vehi-

cles is costly and hazardous. �e use of such vehicles is also outside

the reach of most researchers and students. In this paper, we present

F1/10: an open-source, a�ordable, and high-performance 1/10 scale

autonomous vehicle testbed. �e F1/10 testbed carries a full suite

of sensors, perception, planning, control, and networking so�ware

stacks that are similar to full scale solutions. We demonstrate key

examples of the research enabled by the F1/10 testbed, and how

the platform can be used to augment research and education in

autonomous systems, making autonomy more accessible.

1 INTRODUCTION
Progress in cyber-physical systems (CPS) requires the availability

of robust platforms on which researchers can conduct real-world

experiments and testing. Unfortunatley, a vast majority of CPS

experiments are done in isolation - either completely in simulation,

or on proprietary hardware designs. In either case, researchers are

limited by the inability to deploy their methodologies in realistic

environments without solving a host of unrelated problems. In

many cases, due to these challenges, the research becomes less

reproducible. In contrast, open source tools, and platforms, which

can be commonly used across di�erent CPS disciplines and by

multiple research groups can be a primary driver in enabling high-

impact research and teaching.

�is lack of commonly available CPS testbeds is especially sig-

ni�cant in the rapidly growing �eld of connected, and autonomous

vehicles (AVs). Modern full-scale automotive platforms are some of

the most complex cyber-physical systems ever designed. From real-

time and embedded systems, to machine learning and AI, sensor

networks, to predictive control, formal methods, security & pri-

vacy, to infrastructure planning, and transportation - the design of

trustworthy, safe AVs is a truly interdisciplinary endeavour that has

captured the imagination of researchers in both academia and indus-

try. Auto companies are joining with tech giants like Google, Uber,

and prominent start-ups to develop next-generation autonomous

Figure 1: It takes only a couple of hours fully to assemble a F1/10 autonomous
racecar, using detailed instructions available at h�p://f1tenth.org/

vehicles that will alter our roads and lay the groundwork for future

smart cities.

Today, conducting research in autonomous systems and AVs re-

quires building one’s own automotive testbed from scratch. Some-

times researchers must enter into restrictive agreements with auto-

motive manufactures to obtain access to the documentation nec-

essary to build such a testbed, thus preventing the release of their

testbed so�ware and hardware.

�is paper presents the F1/10Autonomous Racing Cyber-Physical

platform and summarizes the use of this testbed technology as the

common denominator and key enabler to address the research and

education needs of future autonomous systems and automotive

Cyber-Physical Systems. �ere are no a�ordable, open-source,

and integrated autonomous vehicles test-beds available today that

would �t in a typical indoor CPS lab. Our goal is not to provide

yet another isolated vehicle testbed. Instead, we aim to relieve re-

searchers around the world of the requirement to set up their own

facilities for research in autonomous vehicles. �e F1/10 research

instrument has the potential to build stronger networks of collab-

orative research. Since the platform is 1/10 the the scale of a real

vehicle we call it F1/10 (inspired from Formula 1 (F1)). Kick-started

through a joint e�ort by University of Pennsylvania (USA), Univer-

sity of Virginia (USA), and UNIMORE (Italy), the F1/10 community

is rapidly growing with about 20+ institutions utilizing the test-bed.
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Figure 2: Overview of the F1/10 research instrument - Modular chassis and system design with detailed instructions; open-source so�ware stack in ROS; and a
wide variety of AV research enabled in the lab on a real testbed.

F1/10 enables researchers and students to rapidly explore auto-

motive cyber-physical systems by providing a platform for real-

world experimentation. F1/10’s biggest value is in taking care of

the most tedious aspects of pu�ing together an autonomous vehi-

cle testbed so that the user can focus directly on the research and

learning goals.

While commercially availablemobile platforms like TurtleBot2 [43],

and Jackal UGV [42] can be used as a research testbed, they lack re-

alistic dynamics like Ackermann steering, and the ability to travel at

high speeds - a characteristic which is essential for any autonomous

vehicle testbed. In contrast, the F1/10 platform is designed to ad-

dress the issues of realistic vehicle dynamics, and drive-trains. We

have designed the F1/10 platform using fully open-source and stan-

dardized systems that take advantage of ROS [38] and its associated

libraries. On our website h�p://f1tenth.org/, detailed, and free in-

structions are available on how to build, and drive the platform.

�ere is an active community of researchers who contribute to both

the open-source hardware and so�ware design.

We present the following open-source capabilities of the F1/10

Autonomous Cyber-Physical Platform: (i) Open-source mechanical

design (chassis, development circuit boards, programmable hard-

ware) and open-source kits for assembling a 1/10-scale autonomous

racing car. (ii) A suite of AV so�ware libraries for perception,

planning, control and coordinated autonomy research. (iii) F1/10

simulator and virtual race track. (iv) Multiple annual autonomous

racing competitions, hackathons, and high-school education pro-

grams. (v) Online course material and data sets. �is paper has the

following research contributions:

(1) �e design and implementation of F1/10, an open-source

autonomous testbed for research and education in auton-

omy,

(2) Modular hardware and so�ware stacks that make the F1/10

testbed an accessible, AV vehicle research tool,

(3) More than a dozen representative examples of the types

of research enabled by the F1/10 platform, particularly

those that can be used to test AV algorithms and so�ware

pipelines with realistic dynamics on a physical and a�ord-

able testbed,

(4) A case study of going from 1/10 scale F1/10 cars to full

scale autonomous vehicles,

(5) Overview of the widely successfully and exciting F1/10

Autonomous Racing Competitions being held at premier

CPS and Embedded Systems venues over the last 3 years.

2 F1/10 TESTBED
�e F1/10 platform is designed to meet the following requirements:

(a) �e platform must be able to capture the dynamics of a full

scaled autonomous car; (b) �e platform’s hardware and so�ware

stack must be modular so as to enable easy upgrades, maintenance

and repairs; and (c) �e platform must be self-sustaining in terms

of power, computation and sensors, i.e, it need not use any external

localization (VICON cameras).

2.1 System Architecture
Figure 2 shows an overview of the F1/10 platform. �e perception

module interfaces and controls the various sensors including scan-

ning LiDARs, monocular & stereo cameras, inertial sensors, etc.

�e sensors provide the platform with the ability to navigate and lo-

calize in the operating environment. �e planning pipeline (in ROS)

helps process the sensor data, and run mapping, and path planning

algorithms to determine the trajectory of the car. Finally, the con-

trol module determines the steering and acceleration commands to

follow the trajectory in a robust manner.

2.2 F1/10 Build
In this section we provide a brief description of how the F1/10

autonomous race is built. Detailed instructions and assembly videos

can be found at f1tenth.org.
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Chassis: �e chassis consists of two parts. �e bo�om chassis is

a 1/10 scale race car chassis available from Traxxas [53]. �e top

chassis is a custom laser-cut ABS plate that our team has developed

and to which all the electronic components are a�ached. �e CAD

and laser cut �les for the top plate are open-sourced. �e Traxxas

bo�om chassis is no ordinary racing toy: it is a very realistic rep-

resentation of a real car. It has 4-wheel drive and can reach a top

speed of 40mph, which is extremely fast for a car this size. Tire

designs replicate the racing rubber used on tarmac circuits. �e

turnbuckles have broad �ats that make it easy to set toe-in and

camber, just like in a real race car. �e bo�om chassis has a high

RPM brush-less DC motor to provide the drive to all the wheels, an

Electronic Speed Controller (ESC) to controls the main drive motor

using pulse-width modulation (PWM), a servo motor for control-

ling the Ackermann steering, and a ba�ery pack; which provides

power to all these systems. All the sensors and the on-board com-

puter are powered by a separate power source (lithium-ion ba�ery).

�e F1/10 platform components are a�ordable and widely avail-

able across the world making it accessible for research groups at

most institutions. �ese components are properly documented and

supported by the manufacturer and the open-source community.

Sensors and Computation: �e F1/10 platform uses an NVIDIA

Jetson TX2 [15] GPU computer. �e Jetson is housed on a carrier

board [24] to reduce the form factor and power consumption. �e

Jetson computer hosts the F1/10 so�ware stack built on Robot

Operating System (ROS). �e entire so�ware stack, compatible

with the sensors listed below, is available as an image that can

be �ashed onto the Jetson, enabling a plug-and-play build. �e

default sensor con�guration includes a monocular USB web cam,

a ZED depth camera, Hokuyo 10LX scanning LiDAR, and a MPU-

9050 inertial measurement unit (IMU). �ese sensors connect to the

Jetson computer over a USB3 hub. Since the underpinnings of the

so�ware stack is in ROS, many other user preferred sensors can

also be integrated/replaced.

Power Board: In order to enable high performance driving and

computing the F1/10 platform utilizes Lithium Polymer ba�eries.

�e power board is used to provide a stable voltage source for

the car and its peripherals since the ba�ery voltage varies as the

vehicle is operated. �e power board also greatly simpli�es wiring

of peripherals such as the LIDAR and wi� antennas. Lastly the

power board includes a Teensy MCU in order to provide a simple

interface to sensors such as wheel encoders and add-ons such as

RF receivers for long range remote control.

Odometry: Precise odometry is critical for path planing, mapping,

and localization. Odometry is provided by the on board VESC as an

estimate of the steering angle and the position of the vehicle. �e

open-source F1/10 so�ware stack includes the custom ROS nodes,

and a con�guration �le required to interface with the VESC and

obtain the odometry information.

Communication architecture: �e F1/10 testbed includes a wire-

less access point which is used to remotely connect (ssh) into the

Jetson board. �e so�ware stack is con�gured to use ROS-Over-
Network used for both sending commands to the car and obtaining

telemetry data from the car in real-time. In addition we have created

so�ware which supplies a socket which enables communication

between multiple F1/10 vehicles operating under di�erent ROS

master nodes.

3 RESEARCH: PLANNING AND CONTROL
�e decision making systems utilized on AVs have progressed sig-

ni�cantly in recent years; however they still remain a key challenge

in enabling AV deployment [48]. While AVs today can perform well

in simple scenarios such as highway driving; they o�en struggle in

scenarios such as merges, pedestrian crossings, roundabouts, and

unprotected le�-turns. Conducting research in di�cult scenarios

using full-size vehicles is both expensive and risky. In this section

we highlight how the F1/10 platform can enable research on algo-

rithms for obstacle avoidance, end-to-end driving, model predictive

control, and vehicle-to-vehicle communication.

3.1 Obstacle avoidance
Obstacle avoidance and forward collision assist are essential to

the operation of an autonomous vehicle. �e AV is required to

scan the environment for obstacles and safely navigate around

them. For this reason, many researchers have developed interesting

real-time approaches for avoiding unexpected static and dynamic

obstacles [22, 50]. To showcase the capability of the F1/10 testbed,

we implement one such algorithm known as Follow �e Gap (FTG)

method [47]. �e Follow the Gap method is based on the construc-

tion of a gap array around the vehicle and calculation of the best

heading angle for moving the robot into the center of the maximum

gap in front, while simultaneously considering its goal. �ese two

objectives are considered simultaneously by using a fusing func-

tion. Figure 3[Le�] shows an overview and the constraints of FTG

method. �e three steps involved in FTG are:

(a) Calculating the gap array using vector �eld histogram, and �nd-

ing the maximum gap in the LIDAR point cloud using an e�cient

sorting algorithm,

(b) Calculating the center of the largest gap, and

(c) Calculating the heading angle to the centre of the largest gap in

reference to the orientation of the car, and generating a steering

control value for the car.

3.2 End-to-end driving
Some recent research replaces the classic chain of perception, plan-

ning, and control with a neural network that directly maps sensor

input to control output [7, 10, 14], a methodology known as end-to-

end driving. Despite the early interest in end-to-end driving [37],

most self-driving cars still use the perception-planning-control par-

adigm. �is slow development can be explained by the challenges

of verifying system performance; however, new approaches based

on reinforcement learning are being actively developed [25].

�e F1/10 testbed is a well suited candidate for experimenta-

tion with end-to-end driving pipelines, from data gathering and

annotation, to inference, and in some cases even training.

Data gathering and annotation for deep learning: As shown
in Figure 3[Right], we are able to integrate a First Person View (FPV)

camera and headset with the F1/10 car. We are also able to drive

the car manually with a USB steering wheel and pedals instead of

the RC remote controller which comes with the Traxxas car. �e

setup consists of a Fat Shark FSV1204 - 700TVL CMOS Fixed Mount

FPV Camera, 5.8GHz spiroNET Cloverleaf Antenna Set, 5.8GhZ

ImmersionRC receiver, and Fat Shark FSV1076-02 Dominator HD3

Core Modular 3D FPV Goggles Headset. �e FPV setup easily

enables teleoperation for the purposes of collecting data to train

the end-to-end deep neural netowrks (DNNs). Each training data

3



Figure 3: Planing and control research enabled by the F1/10 platform: (Bo�om Le�) Reactive Obstacle Avoidance, (Top Le�) End-to-End Driving, (Top Right)Model
Predictive Control, (Bo�om Right) V2V Collaboration

consists of an input, in this case an image from the front facing

camera, and a label a vector containing the steering angle and

requested acceleration. Practical issues arise due to the fact that

the label measurements (50 Hz) must be synchronized with the

acquired camera images (30 Hz). Included in this portion of the

stack is a ROS node which aligns the measurements and the labels.

As part of this research we are releasing over 40,000 labeled images

collected from multiple builds at the University of Pennsylvania

and the University of Virginia.

End-to-End driving: Partly inspired by Pilotnet [7] end-to-end

work, we implemented a combination of a LSTM [27] and a Con-

volutional Neural Network(CNN) [20] cell. �ese units are then

used in the form of a recurrent neural network (RNN). �is setup

uses the bene�ts of LSTMs in maintaining temporal information

(critical to driving) and utilizes the ability of CNN’s to extract high

level features from images.

To evaluate the performance of the model we use the normalized

root mean square error (NRMSE) metric between the ground truth

steering value and the predicted value from the DNN. As can be

seen in the point-of-view (PoV) image in Figure 3[Le�], our DNN

is able to accurately predict the steering angle with an NRMSE of

0.14.

3.3 Global & local approaches to path planning
AVs operate in relatively structured environments. Most scenarios

an AVmight face feature some static structure. O�en this is the road

geometry, lane connectivity, locations of tra�c signals, buildings,

etc. Many AVs exploit the static nature of these elements to increase

their robustness to sensing errors or uncertainty. In the context of

F1/10, it may be convenient to exploit some information known a
priori about the environment, such as the track layout and �oor

friction. �ese approaches are called static, or global, and they

typically imply building a map of the track, simulating the car in

the map, and computing o�ine a suitable nominal path which the

vehicle will a�empt to follow. Valuable data related to friction and

dri� may also be collected to re�ne the vehicle dynamics model.

More re�ned models can be adopted o�-line to compute optimal

paths and target vehicle speeds, adopting more precise optimization

routines that have a higher computational complexity to minimize

the lap time.

Once the desired global path has been de�ned, the online planner

must track it. To do that, there are two main activities must be

accomplished on-line, namely localization and vehicle dynamics
control. Once the vehicle has been properly localized within a

map, a local planner is adopted to send longitudinal and transversal

control signals to follow the precomputed optimal path. As the local

planner needs to run in real-time, simpler controllers are adopted

to decrease the control latency as much as possible. Convenient

online controllers include pure pursuit path geometric tracking

[11]. �e F1/10 so�ware distribution includes an implementation

of pure pursuit, nodes for creating and loading waypoints, and path

visualization tools. For the interested reader we recommend this

comprehensive survey of classical planning methods employed on

AVs [34].

3.4 Model Predictive Control
While data annotation for training end-to-end networks is rela-

tively easy, the performance of such methods is di�cult to validate

empirically [49] especially relative to approaches which decompose

functionality into interpret-able modules. In this section we outline

both a local planner which utilizes a model predictive controller

(MPC) and a learned approximation of the policy it generates detail-

ing one way planning components can be replaced with e�cient

learned modules.
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Components: �e F1/10 platform includes a MPC wri�en in C++

comprised of the vehicle dynamics model, an optimization rou-

tine which performs gradient descent on the spline parameters.

Peripheral support nodes provide an interface to road center line

information, a multi-threaded goal sampler, a 2D occupancy grid,

and a trajectory evaluation module. Additionally, we include a

CUDA implementation of a learned approximation of the MPC

which utilizes the same interface as described above.

Cubic Spline Trajectory Generation: One local planner avail-
able on the F1/10 vehicle utilizes the methods outlined in [29] and

[21] and �rst described in [32]. �is approach is commonly known

as state-la�ice planning with cubic spline trajectory generation. Each
execution of the planner requires the current state of the vehicle

and a goal state. Planning occurs in a local coordinate frame. �e

vehicle state x is de�ned in the local coordinate system, a subscript

indicates a particular kind of state (i.e. a goal) In this implemen-

tation we de�ne x as: ®x = [sx sy v Ψ κ]T , where sx and sy are the

x and y positions of the center of mass, v is the velocity, Ψ is the

heading angle, and κ is the curvature.

In this formulation, trajectories are limited to a speci�c class of

parameterized curves known as cubic splines which are dense in the

robot workspace. We represent a cubic spline as a function of arc

length such that the parameters ®p = [s a b c d]T where s is the total
curve length and (a,b, c,d) are equispaced knot points representing
the curvature at a particular arc length. When these parameters

are used to de�ne the expression of κ(s) which can be used to steer

the vehicle directly. �e local planner’s objective is then to �nd a

feasible trajectory from the initial state de�ned by the tuple ®x to a

goal pose ®xд .
We use a gradient descent algorithm and forward simulation

models which limit the ego-vehicle curvature presented in [21].

�ese methods ensure that the path generated is kinematically and

dynamically feasible up to a speci�ed velocity.

Learning an Approximation: Recall that ®x , the current state of
the AV, can be expressed as the position of a moving reference

frame a�ached to the vehicle. O�ine, a region in front of the AV is

sampled, yielding a set ofM possible goals {®xi }Mi=1, each expressed

in relative coordinates. �en for each goal ®xд,i the reference trajec-
tory connecting them is computed by the original MPC algorithm.

Denote the computed reference trajectory by ®pi = [s a b c d]T �us

we now have a training set {(®xд,i , ®pi )}Mi=1. A neural network NNT P
is used to �t the function xдoal,i 7→ ®pi . Online, given an actual

target state ®xд in relative coordinates, the AV computes NNT P (®xд)
to obtain the parameters of the reference trajectory ®pд leading to

®xд . Our implementation utilizes a radial basis function network

architecture, the bene�ts of this decision is that the weights can be

trained algebraically (via a pseudo-inverse) and each data point is

guaranteed to be interpolated exactly. On 145,824 samples in the

test set our methodology exhibits a worst-case test error of 0.1%
and is capable of generating over 428,000 trajectories per-second.

3.5 Vehicle-to-Vehicle Communication,
Cooperation, and Behavioral Planning

�e development of autonomous vehicles has been propelled by an

idealistic notion that the technology can nearly eliminate accidents.

�e general public expects AVs to exhibit what can best be described

as superhuman performance; however, a key component of human

driving is the ability to communicate intent via visual, auditory, and

motion based cues. Evidence suggests that these communication

channels are developed to cope with scenarios in which the fun-

damental limitations of human senses restrict drivers to cautious
operations which anticipate dangerous phenomena before they can

be identi�ed or sensed.

Components: In order to carry out V2V communication experi-

ments we augment the F1/10 planning stack with ROS nodes which

contain push/pull TCP clients and servers, these nodes extract user

de�ned state and plan information so that it may be transmi�ed to

other vehicles.

In this research we construct an AV ‘roundabout’ scenario where

the center-island obstructs the ego-vehicles view of the other tra�c

participants. A communication protocol which transmits an object

list describing the relative positions of participating vehicles, and

a simple indicator function encodes whether given each vehicles

preferred next action it is safe to proceed into the roundabout is

implemented. Alternative scenarios such as a high-speed merge

or highway exit maneuver can also easily be constructed at signif-

icantly less cost and risk than real world experiments. �e F1/10

platform enables an intermediate step between simulation and real-

world testing such that the e�ects of sensor noise, wireless channel

degradation, and actuation error may be studied in the context of

new V2V protocols.

4 RESEARCH: PERCEPTION
In this section we highlight how the F1/10 vehicle enables a novel

mode of research relative to perception tasks. Although there has

been huge progress in low-level vision tasks such as object detec-

tion due to e�ectiveness of deep learning, AVs only perform such

tasks in order to enable decisions which lead to safe mobility. In

this context the F1/10 vehicle is a unique tool because it allows

researchers to measure not just performance of a perception sub-

system in isolation, but rather the capabilities of the whole system

within its operating regime. Due to the extensive planning and

state estimation capabilities already reliably enabled on the car new

researchers focused on perception subsystems can enable compari-

son of a variety of methods on uniform platform in the context of

speci�c driving tasks.

4.1 Simultaneous Localization and Mapping
�e ability for a robot to create a map of a new environment without

knowing its precise location (SLAM) is a primary enabler for the

use of the F1/10 platform in a variety of locations and environments.

Moreover, although SLAM is a well understood problem it is still

challenging to create reliable real-time implementations. In order to

allow the vehicle to drive in most indoor environments we provide

interface to a state of the art LIDAR-based SLAM package which

provides loop-closures, namely Google Cartographer [19]. Included

in our base so�ware distribution are local and global se�ings which

we have observed to work well empirically through many trials

in the classroom and at outreach events. In addition we include a

description of the robots geometry in an appropriate format which

enables plug-and-play operation. For researchers interested primar-

ily in new approaches to SLAM the F1/10 platform is of interest due

to its non-trivial dynamics, modern sensor payload, and the ability

to test performance of the algorithm in motion capture spaces (due

to the small size of vehicle).
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Figure 4: Some perception research enabled by the F1/10 platform (clockwise, starting le�); (a) lane following using a monocular camera, (b) optical �ow compu-
tation using Farenback’s method and FlowNet 2.0 and, (c) localization and mapping

In addition to SLAM packages we also provide an interface to

an e�cient, parallel localization package which utilizes a GPU

implementation of raymarching to simulate the observations of

random particles in a known 2D map [54]. �e inclusion of this

package enables research on driving at the limits of control even

without a motion capture system for state estimation.

4.2 Computer Vision
Our distribution of F1/10 so�ware includes the basic ingredients

necessary to explore the use of deep learning for computer vision.

It includes CUDA enabled versions of PyTorch [36], Tensor�ow [1],

and Darknet [39]. We include example networks for semantic seg-

mentation [30], object detection [40], and optical �ow [23]; we

focus on e�cient variants of the state-of-the-art that can run at

greater than 10 FPS on the TX2. Recently, it has come to light

that many DNNs used on vision tasks are susceptible to so called

adversarial examples, subtle perturbations of a few pixels which

to the human eye are meaningless but when processed by a DNN

result in gross errors in classi�cation. Recent work has suggested

that such adversarial examples are not invariant to viewpoint trans-
formations [28], and hence not a concern. �e F1/10 platform can

help to enable principled investigations into how errors in DNN

vision systems a�ect vehicle level performance.

4.3 Lane keep assist
�e F1/10 platform is designed to work with a wide array of sensors

and, among them are USB cameras which enable implementation

of lane tracking, and lane keep assist algorithms [16, 46]. Utilizing

the OpenCV [8] libraries. We implemented a lane tracking algo-

rithm [45] to run in real-time on the F1/10 on-board computer. To

do so, we created an image processing pipeline to capture, �lter, pro-

cess, and analyze the image stream using the ROS image transport
package, and designed a ROS node to keep track of the le� and right

lanes and calculate the geometric center of the lane in the current

frame. �e F1/10 steering controller was modi�ed to keep track

of the lane center using a proportional-derivative-integral (PID)

controller. �e image pipeline detailed in Fig. 4 [Le�] is comprised

of the following tasks:

(a) �e raw RGB camera image, in which the lane color was identi-

�ed by its hue and saturation value, is converted to greyscale and

subjected to a color �lter designed to set the lane color to white

and everything else to black,

(b) �e masked image from the previous step is sent through a

canny edge detector and then through a logical AND mask whose

parameters ensured that the resulting image contains only the in-

formation about the path,

(c)�e output from the second step is �ltered using a Gaussian �lter

that reduces noise and is sent through a Hough transformation,

resulting in the lane markings contrasting a black background. �e

output of the image pipeline contains only the lane markings. �e

lane center is calculated and the F1/10 current heading is compared

to the lane center to generate the error in heading. �e heading of

the car is updated to re�ect the new heading generated by the ROS

node using a PID controller.

5 RESEARCH: SYSTEMS, SIMULATION, AND
VERIFICATION

Safety and robustness are key research areas which must make

progress in order to deploy commercial AVs. In this section we

highlight the tools which we are using to enable simulation, real-

time systems research, and veri�cation e�orts.

5.1 Gazebo Racing Simulators
Why would we want to use a simulator if you have the F1/10 plat-

form? We want to test the car’s algorithms in a controlled environ-

ment before we bring it into the real world so that we minimize risk

6



Figure 5: Figure (le�) shows an F1/10 car in a simulated environment generated using data from the real world, (right, top) real time scheduling of vanishing point
algorithm on the F1/10 onboard computer and, (right, bottom) verifying tra�c behavior

of crashing. For instance, if a front steering servo plastic piece were

to break, it is necessary to disassemble 20 parts in order to replace

it. In fact each of the labs taught in our courses can be completed

entirely in simulation �rst. �e added bene�t is that researchers

and students with resource constraints can still utilize the so�ware

stack that we have built.

We use the ROS Gazebo simulator so�ware [26]. From a high

level, Gazebo loads a world as a .DAE �le and loads the car. Gazebo

also includes a physics engine that can determine how the F1/10

car will respond to control inputs, friction forces, and collisions

with other obstacles in the environment. �e F1/10 simulation pack-

age currently provides four tracks, each of which have real world

counterparts. It is also possible to create custom environments.

In the F1/10 reference manual we provide a tutorial on the use of

Sketchup to create simple 3D models. More advanced 3D modeling

tools such as 3DS Max and Solid Works will also work. Our future

work includes a cloud based simulation tool which utilizes the Py-

Bullet [12] physics engine and Kubernetes [9] containers for ease

of deployment and large scale reinforcement learning experiments.

5.2 Real-time Systems Research
Autonomous driving is one of the most challenging engineering

problems posed to modern embedded computing systems. It entails

processing and interpreting a wide amount of data, in order to make

prompt planning decisions and execute them in real-time. Complex

perception and planning routines impose a heavy computing work-

load to the embedded platform, requiring multi-core computing

engines and parallel accelerators to satisfy the challenging timing

requirements induced by high-speed driving. Inaccuracy in the

localization of the vehicles as well as delays in the perception and

control loop may signi�cantly a�ect the stability of the vehicle, and

result in intolerable deviations from safe operating conditions. Due

to the safety-critical nature of such failures, the F1/10 stack is an

ideal platform for testing the e�ectiveness of new real-time sched-

uling and task partitioning algorithms which e�ciently exploit the

heterogeneous parallel engines made available on the vehicle. One

example of such research implemented on the F1/10 platform is the

AutoV project [55] which explores whether safety critical vehicle

control algorithms can be safely run within a virtual environment.

�e F1/10 platform also enables real-time systems researchwhich

explicitly consider the problem of co-design at the application layer.

Speci�cally the goal is to create planning, perception, and schedul-

ing algorithms which adapt to the context of the vehicle’s operating

environment. �is regime was explored in a study on CPU/GPU

resource allocation for camera-based perception and control [35].

In the experiments performed on the F1/10 platform the objective

was to obtain energy-e�cient computations for the perception and

estimation algorithms used in autonomous systems by manipulat-

ing the clock of each CPU core and the portion of the computation

which would be o�oaded to the a GPU. �ese knobs allow us to

leverage a trade-o� between computation time, power consumption

and output quality of the perception and estimation algorithms. In

this experiment, a vanishing point algorithm is utilized to navigate

a corridor. �e computation is decomposed into three sequential

components, and we study how its runtime and power consump-

tion are a�ected by whether each component is run on a GPU

or CPU, and the frequency at which it is executed. Results high-

light CPU/GPU allocation and execution frequencies which achieve

either be�er throughput or lower energy consumption without sac-

ri�cing control performance. �e possible set of operating points

and their e�ect on the update rate and power consumption for the

vanishing point algorithm are shown in Fig. 5 [Middle].

5.3 Monitoring, Testing, & Veri�cation
F1/10 can be used to support and demonstrate advances in formal

veri�cation and runtime monitoring.
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Real-time veri�cation. Rechability analysis is a technique for

rigorously bounding a system’s future state evolution, given that

its current state x(t) is known to be in some set X (t). �e uncer-

tainty about the system’s current state is due to measurement noise

and actuation imperfections. Being able to ascertain, rigorously,

bounds on the system state over [t , t + T ] despite current uncer-
tainty allows the car to avoid unsafe plans. Calculating the system’s

reach set, however, can be computationally expensive and various

techniques are proposed to deal with this issue, but very few have

been explicitly aimed at real-time operation, or tested in a real-life

situation. �e F1/10 platform enables such testing of reachability

so�ware in a real-world setup, with the code running along with

other loads on the target hardware.

Runtime monitoring Good design practice requires the creation

of runtime monitors, which are so�ware functions that monitor

key properties of the system’s behavior in real-time, report any

violations, and possibly enforce fail-safe behavior. Increased so-

phistication in the perception and control pipelines necessitates

the monitoring of complex requirements, which range from en-

forcing safety and security properties to pa�ern matching over

sensor readings to help perception [2]. A promising direction is to

generate these complex monitors automatically from their high-

level speci�cation [4, 6, 13, 17, 18, 44, 52]. �ese approaches have

been implemented in standalone tools such as [3, 5, 31, 41, 51]. For

robotic applications, it will be necessary to develop a framework

that handles speci�cations in a uni�ed manner and generates ef-

�cient monitoring ROS nodes to be deployed quickly in robotic

applications. Steps in this direction appear in ROSMOP
1
[31], and in

REELAY
2
. �e F1/10 platform is ideal for testing the generated mon-

itors’ e�ciency. Its hardware architecture could guide low-level

details of code generation and deployment over several processors.

�e distributed nature of ROS also raises questions in distributed

monitoring. Finally, F1/10 competitions could be a proving ground

for ease-of-use: based on practice laps, new conditions need to be

monitored and the corresponding code needs to be created and

deployed quickly before the next round. �is would be the ultimate

test of user-friendliness.

Generating Adversarial Tra�c Because F1/10 cars are reduced-
scale, cheaper and safer to operate than full-scale cars, they are a

good option for testing new algorithms in tra�c, where the F1/10

cars provide the tra�c. E.g. if one has learned a dynamic model

of tra�c in a given area, as done in [33] then that same model

can drive a �eet of F1/10 cars, thus providing a convincing setup

for testing new navigation algorithms. �is �eet of cars can also

allow researchers to evaluate statistical claims of safety, since it can

generate more data, cheaply, than a full-scale �eet.

6 FROM F1/10 TO FULL-SCALE AVS
�e open source AV stack provided by the F1/10 project represents

an excellent starting point to implement the perception-planning-

actuation pipeline of a full scale vehicle. Fig.6 shows a vehicle

prototype realized by the HiPeRT Lab of the University of Mod-

ena which extends the F1/10 stack with the required drivers and

routines to process data from six (Sekonix) cameras, a 3D Lidar

(Velodyne VLP-16) and a di�erential GPS receiver. �e primary

controller is based on NVIDIA’s Drive PX Autocruise platform, the

1
h�ps://github.com/Formal-Systems-Laboratory/rosmop

2
h�ps://github.com/doganulus/reelay

Figure 6: Open source perception, planning and control pipeline of F1/10 plat-
form has been successfully applied in the design of full-scale autonomous
racecars at UNIMORE, Italy

automotive-grade version of the Jetson TX2 board adopted in the

F1/10 project. �e car is able to automatically exit a parking lot, nav-

igate autonomously in roundabouts and line-marked paths while

avoiding detected obstacles, stop at tra�c signals when required,

and park itself in a user-de�ned slot. �e �rst version of the HiPeRT

autopilot utilzes a pure pursuit trajectory tracker developed within

the F1/10 framework, and a model predictive controller for trajec-

tory generation. �e Gazebo simulator (and an alternative version

based on Unity) have been adopted to test the HiPeRT autopilot

before deploying it to the real car controller. �e initial prototype,

like F1/10, includes modules such as lane keep assist, DNNs for

object detection, a basic obstacle avoidance planner, SLAM algo-

rithms (HectorSLAM, Cartographer, GraphSLAM, particle �lters,

etc.), Camera/Lidar sensor fusion, and V2I communication support.

In the current version of the car the ROS-based meta operating

system is replaced by a stack with be�er real-time guarantees. Nev-

ertheless, the routines made available by the F1/10 project were

instrumental in enabling the deployment of a working AV proto-

type in a very limited time. Additionally the F1/10 platform proved

to be an ideal sandbox in which to incrementally iterate on the

development of the various components.

7 F1/10 EDUCATION AND COMPEITIONS
�e F1/10 platform is the basis of a full-semester class on au-

tonomous driving at the University of Virginia, University of Penn-

sylvania and at Oregon State University. In addition, our open

source course material has been taught at UT Austin (2016) and

Clemson University (2017). �e online videos from UVA have been

viewed thousands of times since launch. �e courses are o�ered to

graduate and advanced undergraduate students with backgrounds

in any of the following: electrical engineering, mechanical engineer-

ing, robotics, embedded systems, and computer science. Our goal is

to present an example of a class which teaches the entire stack for

autonomous driving: from assembling the electrical components

and sensors, to programming the car at two levels of complexity.

Students who enroll in these courses will learn technologies that

drive today’s research AVs, and have the con�dence to develop

more sophisticated approaches to these problems on their own.

Importantly, the students become familiar with the system as a
whole, and encounter integration problems due to non-real-time
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Figure 7: �e F1/10 testbed instrument is enabling K-12, undergrad, and graduate outreach through our online courses and MOOCs, autonomous racing competi-
tions, summer schools, and hackathaons.

performance, mechanical limitations, and sensor choices - this is

why the students are divided into inter-disciplinary teams.

�e class is project-based, with the formal lectures introducing

the techniques that students will code and implement on the car.

In the �rst half of the semester, the students are guided to the point

where their car can navigate an environment with static obstacles.

In the �rst week they build the car and can control it manually. �en

they successively tackle LiDAR data processing with gap-�nding,

coordinate transformations, reference tracking, Electronic Speed

Control, localization with scan matching, Simultaneous Localiza-

tion and Mapping, and path planning. We also tackle the thorny

question of moral decision-making for autonomous systems. For

this, we assign readings from the humanities and sciences on top-

ics like responsibility and moral agency, and have in-class guided

discussions on the possibility of ethics for autonomous robots. �e

course culminates in a F1/10 ‘ba�le of algorithms’ race among the

teams.

7.1 �e F1/10 Competition
Few things focus themind and excite the spirit like a competition. In

the early days of racing, competitors �rst had to build their vehicles

before they could race them. It was thus as much an engineering as

a racing competition. We want to rekindle that competitive spirit.

For the past three years, we have been organizing the F1/10 In-

ternational Autonomous Racing Competition, the �rst ever event of

its kind. �e inaugural race was held at the 2016 ES-Week in Pi�s-

burgh, USA; followed by another race held during Cyber-Physical

Systems (CPS)Week in April 2018, in Porto, Portugal. �e third race

was held at the 2018 ES-Week in October in Turin, Italy, Figure 7

[Right]). Every team builds the same baseline car, following the

speci�cations on f1tenth.org. From there, they have the freedom

to deploy any algorithms they want to complete a loop around the

track in the fastest time, and to complete the biggest number of

laps in a �xed duration. Future editions of the race will feature

car-vs-car racing.

So far, teams from more than 12 universities have participated in

the F1/10 competition, including teams from KAIST (Korea), KTH

(Sweden), Czech Technical University, University of Connecticut,

Seoul National University, University of New Mexico, Warsaw uni-

versity of Technology, ETH Zurich, Arizona State University, and

Da�code (a Polish venture building company).

8 CONCLUSION AND DISCUSSION
�e paper presents a new open-source and widely used 1/10 scale

autonomous vehicle testbed called F1/10. All the instructions to

build, drive, and race the F1/10 car are freely available on f1tenth.org.

F1/10 uses a modular hardware and so�ware design enabling re-

searches to shape and use the platform to �t their needs. �e default

con�guration houses several sensors and a powerful on-board GPU

- similar to a full scale car. �e chassis of the F1/10 platform provides

realistic dynamics so that researchers can test their algorithms on

the 1/10 scale safely and cost-e�ectively. �e open-source ROS

based so�ware stack makes it very easy for beginners to get up

to speed with autonomous driving behavior and build on existing

capabilities. We show three representative examples of the kind

of research that is easily enabled by the F1/10 platform - obstacle

avoidance, land keep assist, and end-to-end autonomous driving.

F1/10 has slowly become a popular instrument to make autonomy

accessible and bring it to the classroom. Dozens of research groups

have built their cars using instructions and videos available on the

F1/10 web page. We also present highlights from the International

F1/10 Autonomous Racing Competitions, which have been previ-

ously held at prominent CPS and Embedded Systems venues. �e

F1/10 autonomous platform is the building block and the vehicle

for educating tomorrow’s engineers on the interlocking concerns

of performance, control, and safety for autonomous systems, and in

particular for autonomous vehicles. It will also be the meeting point

where a community of researchers from di�erent backgrounds can

9
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develop their ideas in a way that emphasizes prototyping and real-

world testing. As the community continues to grow, so does the

range of possibilities of what we can discover and create.
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