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a b s t r a c t

Demand response (DR) is becoming increasingly important as the volatility on the grid continues to
increase. Current DR approaches are predominantly completely manual and rule-based or involve deriv-
ing first principles based models which are extremely cost and time prohibitive to build. We consider the
problem of data-driven end-user DR for large buildings which involves predicting the demand response
baseline, evaluating fixed rule based DR strategies and synthesizing DR control actions. The challenge is
in evaluating and taking control decisions at fast time scales in order to curtail the power consumption of
the building, in return for a financial reward. We provide a model based control with regression trees
algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large
commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based DR by 17%
for a large DoE commercial reference building and leads to a curtailment of up to 380 kW and over
$45,000 in savings. Our methods have been integrated into an open source tool called DR-Advisor, which
acts as a recommender system for the building’s facilities manager and provides suitable control actions
to meet the desired load curtailment while maintaining operations and maximizing the economic
reward. DR-Advisor achieves 92.8–98.9% prediction accuracy for 8 buildings on Penn’s campus. We com-
pare DR-Advisor with other data driven methods and rank 2nd on ASHRAE’s benchmarking data-set for
energy prediction.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In 2013, a report by the U.S. National Climate Assessment pro-
vided evidence that the most recent decade was the nation’s
warmest on record [1] and experts predict that temperatures are
only going to rise. In fact, the year 2015 is very likely to become
the hottest year on record since the beginning of weather record-
ing in 1880 [2]. Heat waves in summer and polar vortexes in win-
ter are growing longer and pose increasing challenges to an already
over-stressed electric grid.
Furthermore, with the increasing penetration of renewable gen-
eration, the electricity grid is also experiencing a shift from pre-
dictable and dispatchable electricity generation to variable and
non-dispatchable generation. This adds another level of uncer-
tainty and volatility to the electricity grid as the relative proportion
of variable generation vs. traditional dispatchable generation
increases. The organized electricity markets across the world all
use some variant of real-time price for wholesale electricity. The
real-time electricity market at PJM, one of the world’s largest inde-
pendent system operator (ISO), is a spot market where electricity
prices are calculated at five-minute intervals based on the grid
operating conditions. The volatility due to the mismatch between
electricity generation and supply further leads to volatility in the
wholesale price of electricity. For e.g., the polar vortex triggered
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extreme weather events in the U.S. in January 2014, which caused
many electricity customers to experience increased costs. Parts of
the PJM electricity grid experienced a 86-fold increase in the price
of electricity from $31/MWh to $2680/MWh in a matter of a few
minutes [3]. Similarly, the summer price spiked 32-fold from an
average of $25/MWh to $800/MWh in July of 2015. Such events
show how unforeseen and uncontrollable circumstances can
greatly affect electricity prices that impact ISOs, suppliers, and cus-
tomers. Energy industry experts are now considering the concept
that extreme weather, more renewables and resulting electricity
price volatility, could become the new norm.

Across the United States, electric utilities and ISOs are devoting
increasing attention and resources to demand response (DR) [4].
Demand response is considered as a reliable means of mitigating
the uncertainty and volatility of renewable generation and
extreme weather conditions and improving the grid’s efficiency
and reliability. The potential demand response resource contribu-
tion from all U.S. demand response programs is estimated to be
nearly 72,000 MW, or about 9.2 percent of U.S. peak demand [5]
making DR the largest virtual generator in the U.S. national grid.
The annual revenue to end-users from DR markets with PJM ISO
alone is more than $700 million [6]. Global DR revenue is expected
to reach nearly $40 billion from 2014 through 2023 [7].

The volatility in real-time electricity prices poses the biggest
operational and financial risk for large scale end-users of electricity
such as large commercial buildings, industries and institutions [8];
often referred to as C/I/I consumers. In order to shield themselves
from the volatility and risk of high prices, such consumers must
be more flexible in their electricity demand. Consequently, large
C/I/I customers are increasingly looking to demand response pro-
grams to help manage their electricity costs.

DR programs involve a voluntary response of a building to a
price signal or a load curtailment request from the utility or the
curtailment service provider (CSP). Upon successfully meeting
the required curtailment level the end-users are financially
rewarded, but may also incur penalties for under-performing and
not meeting a required level of load curtailment. On the surface
demand response may seem simple. Reduce your power when
asked to and get paid. However, in practice, one of the biggest chal-
lenges with end-user demand response for large scale consumers
of electricity is the following: Upon receiving the notification for a
DR event, what actions must the end-user take in order to achieve
an adequate and a sustained DR curtailment? This is a hard question
to answer because of the following reasons:

1. Modeling complexity and heterogeneity: Unlike the automo-
bile or the aircraft industry, each building is designed and used
in a different way and therefore, it must be uniquely modeled.
Learning predictive models of building’s dynamics using first
principles based approaches (e.g., with EnergyPlus [9]) is very
cost and time prohibitive and requires retrofitting the building
with several sensors [10]; The user expertise, time, and associ-
ated sensor costs required to develop a model of a single build-
ing is very high. This is because usually a building modeling
domain expert typically uses a software tool to create the
geometry of a building from the building design and equipment
layout plans, add detailed information about material proper-
ties, about equipment and operational schedules. There is
always a gap between the modeled and the real building and
the domain expert must then manually tune the model to
match the measured data from the building [11].

2. Limitations of rule-based DR: The building’s operating condi-
tions, internal thermal disturbances and environmental condi-
tions must all be taken into account to make appropriate DR
control decisions, which is not possible with using rule-based
and pre-determined DR strategies since they do not account
for the state of the building but are instead based on best prac-
tices and rules of thumb. As shown in Fig. 1(a), the performance
of a rule-based DR strategy is inconsistent and can lead to
reduced amount of curtailment which could result in penalties
to the end-user. In our work, we show how a data-driven DR
algorithm outperforms a rule-based strategy by 17% while
accounting for thermal comfort. Rule based DR strategies have
the advantage of being simple but they do not account for the
state of the building and weather conditions during a DR event.
Despite this lack of predictability, rule-based DR strategies
account for the majority of DR approaches.

3. Control complexity and scalability: Upon receiving a notifica-
tion for a DR event, the building’s facilities manager must deter-
mine an appropriate DR strategy to achieve the required load
curtailment. These control strategies can include adjusting zone
temperature set-points, supplyair temperatureandchilledwater
temperature set-point, dimming or turning off lights, decreasing
duct static pressure set-points and restricting the supply fan
operation, etc. In a large building, it is difficult to asses the effect
of one control action on other sub-systems and on the building’s
overall power consumption because the building sub-systems
are tightly coupled. Consider the case of the University of Penn-
sylvania’s campus, which has over a hundred different buildings
and centralized chiller plants. In order to perform campus wide
DR, the facilities manager must account for several hundred
thousand set-points and their impact on the different buildings.
Therefore, it is extremely difficult for a human operator to accu-
rately gauge the building’s or a campus’s response.

4. Interpretability of modeling and control: Predictive models
for buildings, regardless how sophisticated, lose their effective-
ness unless they can be interpreted by human experts and facil-
ities managers in the field. For e.g., artificial neural networks
(ANN) obscure physical control knobs and interactions and
hence, are difficult to interpret by building facilities managers.
Therefore, the required solution must be transparent, human
centric and highly interpretable.

The goal with data-driven methods for energy systems is to
make the best of both worlds; i.e. simplicity of rule based
approaches and the predictive capability of model based strategies,
but without the expense of first principle or grey-box model
development.

In this paper, we present a method called DR-Advisor (Demand
Response-Advisor), which acts as a recommender system for the
building’s facilities manager and provides the power consumption
prediction and control actions for meeting the required load cur-
tailment and maximizing the economic reward. Using historical
meter and weather data along with set-point and schedule infor-
mation, DR-Advisor builds a family of interpretable regression
trees to learn non-parametric data-driven models for predicting
the power consumption of the building (Fig. 2). DR-Advisor can
be used for real-time demand response baseline prediction, strat-
egy evaluation and control synthesis, without having to learn first
principles based models of the building.

1.1. Contributions

This work has the following data-driven contributions:

1. DR baseline prediction: We demonstrate the benefit of using
regression trees based approaches for estimating the demand
response baseline power consumption. Using regression tree-
based algorithms eliminates the cost of time and effort required
to build and tune first principles based models of buildings for
DR. DR-Advisor achieves a prediction accuracy of 92.8–98.9% for
baseline estimates of eight buildings on the Penn campus.



Fig. 1. Majority of DR today is manual and rule-based. (a) The fixed rule based DR is inconsistent and could under-perform compared to the required curtailment, resulting in
DR penalties. (b) Using data-driven models DR-Advisor uses DR strategy evaluation and DR strategy synthesis for a sustained and sufficient curtailment.

Fig. 2. DR-Advisor
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2. DR strategy evaluation: We present an approach for building
auto-regressive trees and apply it for demand response strategy
evaluation. Our models takes into account the state of the build-
ing and weather forecasts to help choose the best DR strategy
among several pre-determined strategies.

3. DR control synthesis: We introduce a novel model based con-
trol with regression trees (mbCRT) algorithm to enable control
with regression trees use it for real-time DR synthesis. Using
the mbCRT algorithm, we can optimally trade off thermal com-
fort inside the building against the amount of load curtailment.
While regression trees are a popular choice for prediction based
models, this is the first time regression tree based algorithms
have been used for controller synthesis with applications in
demand response. Our synthesis algorithm outperforms rule
based DR strategy by 17% while maintaining bounds on thermal
comfort inside the building.
1.2. Experimental validation and evaluation
architecture.
We evaluate the performance of DR-Advisor using a mix of real
data from 8 buildings on the campus of the University of Pennsyl-
vania, in Philadelphia USA and data-sets from a virtual building
test-bed for the Department of Energy’s (DoE) large commercial
reference building. We also compare the performance of DR-
Advisor against other data-driven methods using a bench-
marking data-set from AHRAE’s great energy predictor shootout
challenge.

This paper is organized as follows: Section 2 describes the chal-
lenges with demand response. In Section 3, we present how data-
driven modeling methods can be used for the problems associated
with DR. Section 4, presents a new algorithm to perform control
with regression trees for synthesizing demand response strategies.
Section 5 makes a compelling case for regression trees being a
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suitable choice of data-driven models for demand response. Sec-
tion 6 describes the MATLAB based DR-Advisor toolbox. Section 7
presents a comprehensive case study with DR-Advisor using data
from several real buildings. In Section 8, a detailed survey of
related work has been presented. We conclude this paper in Sec-
tion 9 with a summary of our results and a discussion about future
directions.
2. Problem definition

The timeline of a DR event is shown in Fig. 3. An event notifica-
tion is issued by the utility/CSP, at the notification time (�30 mins).
The time by which the reduction must be achieved, is the reduction
deadline. The main period during which the demand needs to be
curtailed is the sustained response period (1–6 h). The end of the
response period is when the main curtailment is released. The nor-
mal operation is gradually resumed during the recovery period. The
DR event ends at the end of the recovery period.

The key to answering the question of what actions to take to
achieve a significant DR curtailment upon receiving a notification,
lies in making accurate predictions about the power consumption
response of the building. Specifically, it involves solving the three
challenging problems of end-user demand response, which are
described next.
2.1. DR baseline prediction

The DR baseline is an estimate of the electricity that would have
been consumed by a customer in the absence of a demand response
event (as shown in Fig. 3) The measurement and verification of the
demand response baseline is the most critical component of any DR
program since the amount of DR curtailment, and any associated
financial reward can only be determined with respect to the base-
line estimate. The goal is to learn a predictive model gðÞ which

relates the baseline power consumption estimate ^Ybase to the fore-
cast of the weather conditions and building schedule for the dura-

tion of the DR-event i.e., ^Ybase ¼ gðweather scheduleÞ.
2.2. DR strategy evaluation

Most DR today is manual and conducted using fixed rules and
pre-determined curtailment strategies based on recommended
guidelines, experience and best practices. During a DR event, the
building’s facilities manager must choose a single strategy among
several pre-determined strategies to achieve the required power
curtailment. Each strategy includes adjusting several control knobs
such as temperature set-points, lighting levels and temporarily
switching off equipment and plug loads to different levels across
different time intervals.
Fig. 3. Example of a demand response timeline.
As only one strategy can be used at a time, the question then is,
how to choose the DR strategy from a pre-determined set of strategies
which leads to the largest load curtailment?

Instead of predicting the baseline power consumption ^Ybase, in
this case we want the ability to predict the actual response of

the building ^YkW due to any given strategy. For example, in
Fig. 3, there are N different strategies available to choose from.
DR-Advisor predicts the power consumption of the building due
to each strategy and chooses the DR strategy (2 fi; j; . . . k . . .Ng)
which leads to the largest load curtailment subject to the con-
straints on the thermal comfort and set-points. The resulting strat-
egy could be a combination of switching between the available set
of strategies.

2.3. DR strategy synthesis

Instead of choosing a DR strategy from a pre-determined set of
strategies, a harder challenge is to synthesize new DR strategies
and obtain optimal operating points for the different control vari-
ables. We can cast this problem as an optimization over the set of
control variables, Xc , such that

minimize
Xc

f ð ^YkWÞ

subject to ^YkW ¼ hðXcÞ
Xc 2 Xsafe

ð1Þ

we want to minimize the predicted power response of the building
^YkW , subject to a predictive model which relates the response to the

control variables and subject to the constraints on the control vari-
ables, given by Xsafe.

Unlike rule-base DR, which does not account for building state
and external factors, in DR synthesis the optimal control actions
are derived based on the current state of the building, forecast of
outside weather and electricity prices.
3. Data-driven modeling for demand response

Our goal is to find data-driven functional models that relates

the value of the response variable, say power consumption, ^YkW

with the values of the predictor variables or features
½X1;X2; . . . ;Xm� which can include weather data, set-point informa-
tion and building schedules. When the data has lots of features, as
is the case in large buildings, which interact in complicated, non-
linear ways, assembling a single global model, such as linear or
polynomial regression, can be difficult, and lead to poor response
predictions. An approach to non-linear regression is to partition
the data space into smaller regions, where the interactions are
more manageable. We then partition the partitions again; this is
called recursive partitioning, until finally we get to chunks of the
data space which are so tame that we can fit simple models to
them. Regression trees is an example of an algorithm which
belongs to the class of recursive partitioning algorithms. The sem-
inal algorithm for learning regression trees is CART as described in
[12].

Regression trees based approaches are our choice of data-driven
models for DR-Advisor. The primary reason for this modeling
choice is that regression trees are highly interpretable, by design.
Interpretability is a fundamental desirable quality in any predictive
model. Complex predictive models like neural-networks, support
vector regression, etc. go through a long calculation routine and
involve too many factors. It is not easy for a human engineer to
judge if the operation/decision is correct or not or how it was gen-
erated in the first place. Building operators are used to operating a
system with fixed logic and rules. They tend to prefer models that
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are more transparent, where it is clear exactly which factors were
used to make a particular prediction. At each node in a regression
tree a simple, if this then that, human readable, plain text rule is
applied to generate a prediction at the leafs, which anyone can
easily understand and interpret. Making machine learning algo-
rithms more interpretable is an active area of research [13], one
that is essential for incorporating human centric models in demand
response for energy systems.

3.1. Data-description

In order to build regression trees which can predict the power
consumption of the building, we need to train on time-stamped
historical data. As shown in Fig. 2, the data that we use can be
divided into three different categories as described below:

1. Weather data: It includes measurements of the outside dry-
bulb and wet-bulb air temperature, relative humidity, wind
characteristics and solar irradiation at the building site.

2. Schedule data: We create proxy variables which correlate with
repeated patterns of electricity consumption e.g., due to occu-
pancy or equipment schedules. Day of Week is a categorical pre-
dictor which takes values from 1 to 7 depending on the day of
the week. This variable can capture any power consumption
patterns which occur on specific days of the week. For instance,
there could a big auditorium in an office building which is only
used on certain days. Likewise, Time of Day is quite an impor-
tant predictor of power consumption as it can adequately cap-
ture daily patterns of occupancy, lighting and appliance use
without directly measuring any one of them. Besides using
proxy schedule predictors, actual building equipment schedules
can also be used as training data for building the trees.

3. Building data: The state of the building is required for DR strat-
egy evaluation and synthesis. This includes (i) Chilled Water
Supply Temperature (ii) Hot Water Supply Temperature (iii)
Zone Air Temperature (iv) Supply Air Temperature (v) Lighting
levels.

3.2. Data-driven DR baseline

DR-Advisor uses a mix of several algorithms to learn a reliable
baseline prediction model. For each algorithm, we train the model
on historical power consumption data and then validate the pre-
dictive capability of the model against a test data-set which the
model has never seen before. In addition to building a single
regression tree, we also learn cross-validated regression trees,
boosted regression trees (BRT) and random forests (RF). The
ensemble methods like BRT and RF help in reducing any over-
fitting over the training data. They achieve this by combining the
predictions of several base estimators built with a given learning
algorithm in order to improve generalizability and robustness over
a single estimator. For a more comprehensive review of random
forests we refer the reader to [14]. A boosted regression tree
(BRT) model is an additive regression model in which individual
terms are simple trees, fitted in a forward, stage-wise fashion [15].

3.3. Data-driven DR evaluation

The regression tree models for DR evaluation are similar to the
models used for DR baseline estimation except for two key differ-
ences: First, instead of only using weather and proxy variables as
the training features, in DR evaluation, we also train on set-point
schedules and data from the building itself to capture the influence
of the state of the building on its power consumption; and Second,
in order to predict the power consumption of the building for the
entire length of the DR event, we use the notion of auto-
regressive trees. An auto-regressive tree model is a regular regres-
sion tree except that the lagged values of the response variable are
also predictor variables for the regression tree i.e., the tree struc-
ture is learned to approximate the following function:

^YkWðtÞ ¼ f ð½X1;X2; . . . ;Xm;YkWðt � 1Þ; . . . ;YkWðt � dÞ�Þ ð2Þ

where the predicted power consumption response ^YkW at time t,
depends on previous values of the response itself
½YkWðt � 1Þ; . . . ; YkWðt � dÞ� and d is the order of the auto-
regression. This allows us to make finite horizon predictions of
power consumption for the building. At the beginning of the DR
event we use the auto-regressive tree for predicting the response
of the building due to each rule-based strategy and choose the
one which performs the best over the predicted horizon. The predic-
tion and strategy evaluation is re-computed periodically through-
out the event.

4. DR synthesis with regression trees

The data-driven methods described so far use the forecast of
features to obtain building power consumption predictions for
DR baseline and DR strategy evaluation. In this section, we extend
the theory of regression trees to solve the demand response syn-
thesis problem described earlier in Section 2.3. This is our primary
contribution.

Recall that the objective of learning a regression tree is to learn
a model f for predicting the response Y with the values of the pre-
dictor variables or features X1;X2; . . . ;Xm; i.e.,
Y ¼ f ð½X1;X2; . . . ;Xm�Þ. Given a forecast of the features

X̂1; X̂2; . . . ; X̂m we can predict the response Ŷ . Now consider the case
where a subset, Xc � X of the set of features/variables X’s are
manipulated variables i.e., we can change their values in order to

drive the response ðŶÞ towards a certain value. In the case of build-
ings, the set of variables can be separated into disturbances (or
non-manipulated) variables like outside air temperature, humidity,
wind, etc. while the controllable (or manipulated) variables would
be the temperature and lighting set-points within the building. Our
goal is to modify the regression trees and make them suitable for
synthesizing the optimal values of the control variables in real-
time.

4.1. Model-based control with regression trees

The key idea in enabling control synthesis for regression trees is
in the separation of features/variables into manipulated and non-
manipulated features. Let Xc � X denote the set of manipulated
variables and Xd � X denote the set of disturbances/non-
manipulated variables such thatXc [Xd � X. Using this separation
of variables we build upon the idea of simple model based regres-
sion trees [16,17] to model based control with regression trees
(mbCRT).

Fig. 4 shows an example of how manipulated and non-
manipulated features can get distributed at different depths of
model based regression tree which uses a linear regression func-
tion in the leaves of the tree:

ŶRi ¼ b0;i þ bT
i X ð3Þ

where ŶRi is the predicted response in region Ri of the tree using all
the features X. In such a tree the prediction can only be obtained if
the values of all the features X’s is known, including the values of
the control variables Xci’s. Since the manipulated and non-
manipulated variables appear in a mixed order in the tree depth,
we cannot use this tree for control synthesis. This is because the
value of the control variables Xci’s is unknown, one cannot navigate



Fig. 4. Example of a regression tree with linear regression model in leaves. Not
suitable for control due to the mixed order of the controllable Xc (solid blue) and
uncontrollable Xd features. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 5. Example of a tree structure obtained using the mbCRT algorithm. The
separation of variables allows using the linear model in the leaf to use only control
variables.
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to any single region using the forecasts of disturbances alone. To be
precise, the non-manipulated variables, such as weather
disturbances, proxy variables, and fix schedules are available as a
forecast for the duration of the event; whereas the values of the
manipulated variables, such as chilled water, supply air, zone
air, and lighting set-points is not known for the duration of the
event.

The mbCRT algorithm avoids this problem using a simple but
clever idea. We still partition the entire data space into regions
using CART algorithm, but the top part of the regression tree is
learned only on the non-manipulated features Xd or disturbances
as opposed to all the featuresX (Fig. 5) In every region at the leaves
of the ‘‘disturbance” tree a linear model is fit but only on the con-
trol variables Xc:

YRi ¼ b0;i þ bT
i Xc ð4Þ

Separation of variables allows us to use the forecast of the distur-
bances X̂d to navigate to the appropriate region Ri and use the linear
regression model (YRi ¼ b0;i þ bT

i Xc) with only the control/manipu-
lated features in it as the valid prediction model for that time-step.

Algorithm 1. mbCRT: Model Based Control With Regression Trees

1: DESIGN TIME

2: procedure MODEL TRAINING
3: Separation of Variables
4: Set Xc  non-manipulated features
5: Set Xd  manipulated features
6: Build the power prediction tree TkW with Xd

7: for all Regions Ri at the leaves of TkW do
8: Fit linear model ^kWRi ¼ b0;i þ bTi Xc

9: Build q temperature trees T1; T2 . . . Tq with Xd

10: end for
11: for all Regions Ri at the leaves of Ti do

12: Fit linear model T̂i ¼ b0;i þ bTi Xc

13: end for
14: end procedure
15: RUN TIME

16: procedure CONTROL SYNTHESIS

17: At time t obtain forecast X̂dðt þ 1Þ of disturbances
X̂d1ðt þ 1Þ; X̂d2ðt þ 1Þ; . . .

18: Using X̂dðt þ 1Þ determine the leaf and region Rrt for
each tree.

19: Obtain the linear model at the leaf of each tree.
20: Solve optimization in Eq. (5) for optimal control action

X�cðtÞ
21: end procedure
4.2. DR synthesis optimization

In the case of DR synthesis for buildings, the response variable is
power consumption, the objective function can denote the financial
reward of minimizing the power consumption during the DR event.
However, the curtailment must not result in high levels of discom-
fort for the building occupants. In order to account for thermal com-
fort, in addition to learning the tree for power consumption
forecast, we can also learn different trees to predict the temperature
of different zones in the building. As shown in Fig. 6 and Algorithm
1, at each time-step during the DR event, a forecast of the non
manipulated variables is used by each tree, to navigate to the



Fig. 6. DR synthesis with thermal comfort constraints. Each tree is responsible for
contributing one constraint to the demand response optimization.
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appropriate leaf node. For the power forecast tree, the linear model
at the leaf node relates the predicted power consumption of the

building to the manipulated/control variables i.e., ^kW ¼ b0;i þ bT
i Xc .

Similarly, for each zone 1;2; . . . q, a tree is built whose response
variable is the zone temperature Ti. The linear model at the leaf
node of each of the zone temperature tree relates the predicted

zone temperature to the manipulated variables T̂i ¼ a0;j þ bT
j Xc .

Therefore, at every time-step, based on the forecast of the non-
manipulated variables, we obtain qþ 1 linear models between
the power consumption and q zone temperatures and the manipu-
lated variables. We can then solve the following DR synthesis opti-
mization problem to obtain the values of the manipulated
variables Xc:

minimize
Xc

f ð ^kWÞ þ Penalty
Xq

k¼1
ðT̂k � Tref Þ

" #

subject to
^kW ¼ b0;i þ bT

i Xc

T̂1 ¼ a0;1 þ bT
1Xc

	 	 	
T̂d ¼ a0;q þ bT

qXc

Xc 2 Xsafe

ð5Þ

The setXsafe, denotes the upper and lower bounds on the values that
the manipulated/control variables can take. These values are user
defined, based on the limits of operation. For e.g., the upper and
lower values for the zone air set-point temperature, are usually
specified according to ASHRAE Standard 55 [18]. The linear model
between the response variable YRi and the control features Xc is
assumed for computational simplicity. Other models could also be
used at the leaves as long as they adhere to the separation of vari-
ables principle. Fig. 7 shows that the linear model assumption in the
leaves of the tree is a valid assumption. The objective of the
optimization is to minimize the cost of power (or maximize DR
revenue) while minimizing the deviation of the zone temperatures
from a desired set-point temperature. The Penalty, could be a con-
stant value denoting uniform priority of all zones or it could be an
indicator function which specifies different priorities for different
zones. For example, the thermal comfort penalty for a meeting
room not in use could be less than the thermal penalty for the man-
ager’s office. It provides a mechanism for tuning the trade-off
between comfort and curtailment. A larger penalty penalizes tem-
perature violations more compared to a case with smaller penalty,
where more (though small) temperature violations may occur.

The intuition behind the mbCRT Algorithm 1 is that at run time
t, we use the forecast X̂dðt þ 1Þ of the disturbance features to deter-
mine the region of the uncontrollable tree and hence, the linear
model to be used for the control. We then solve the simple linear
program corresponding to that region to obtain the optimal values
of the control variables.

The mbCRT algorithm is the first ever algorithm which allows
the use of regression trees for control synthesis.

5. The case for using regression trees for demand response

Trees share the advantage of being a simple approach, much
like other data-driven approaches. However, they offer several
other advantages in addition to being interpretable, which make
them suitable for solving the challenges of demand response dis-
cussed in Section 2. We list some of these advantages here:

1. Fast computation times: Trees require very low computation
power, both running time and storage requirements. With N
observations and p predictors trees require pNlogN operations
for an initial sort for each predictor, and typically another
pNlogN operations for the split computations. If the splits
occurred near the edges of the predictor ranges, this number
can increase to N2p. Once the tree is built, the time to make pre-
dictions is extremely fast since obtaining a response prediction
is simply a matter of traversing the tree with fixed rules at
every node. For fast demand response, where the price of elec-
tricity could change several times within a few minutes, trees
can provide very fast predictions.

2. Handle a lot of data and variables: Trees can easily handle the
case where the data has lots of features which interact in com-
plicated and nonlinear ways. In the context of buildings, a mix
of weather data, schedule information, set-points, power con-
sumption data is used and the number of predictor variables
can increase very quickly. A large number of features and a
large volume of data can become too overwhelming for global
models, like regression, to adequately explain. For trees, the
predictor variables themselves can be of any combination of
continuous, discrete and categorical variables.

3. Handle missing data: Sometimes, data has missing predictor
values in some or all of the predictor variables. This is especially
true for buildings, where sensor data streams fail frequently
due to faulty sensors or faulty communication links. One
approach is to discard any observation with some missing val-
ues, but this could lead to serious depletion of the training
set. Alternatively, the missing values could be imputed (filled
in), with say the mean of that predictor over the non-missing
observations. For tree-based models, there are two better
approaches. The first is applicable to categorical predictors:
we simply make a new category for ‘‘missing”. From this we
might discover that observations with missing values for some
measurement behave differently than those with non-missing
values. The second more general approach is the construction
of surrogate variables. When considering a predictor for a split,
we use only the observations for which that predictor is not



Fig. 7. Linear model assumption at the leaves. The top figure shows the comparison between fitted values and ground truth values of power consumption for one of the leafs
in the power consumption prediction tree. The bottom figure shows the residual error between fitted and actual power consumption values for all the leaf nodes of the tree.
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missing. Having chosen the best (primary) predictor and split
point, we build a list of surrogate predictors and split points.
The first surrogate is the predictor and corresponding split point
that best mimics the split of the training data achieved by the
primary split. The second surrogate is the predictor and corre-
sponding split point that does second best, and so on. When
sending observations down the tree either in the training phase
or during prediction, we use the surrogate splits in order, if the
primary splitting predictor is missing.

4. Robust to outliers: Tree based models are generally not
affected by outliers but regression based models are. The intu-
itive reasoning behind this is that during the construction of
the tree the region of the data with outliers is likely to be par-
titioned in a separate region.

6. DR-Advisor: toolbox design

The algorithms described thus far, have been implemented into
a MATLAB based tool called DR-Advisor. We have also developed a
graphical user interface (GUI) for the tool (Fig. 8) to make it user-
friendly.

Starting from just building power consumption and tempera-
ture data, the user can leverage all the features of DR-Advisor
and use it to solve the different DR challenges. The toolbox design
follows a simple and efficient workflow as shown in Fig. 9. Each
step in the workflow is associated with a specific tab in the GUI.
The workflow is divided into the following steps:

1. Upload data: When the toolbox loads, the Input tab of the GUI
(Fig. 8) is displayed. Here the user can upload and specify any
sensor data from the building which could be correlated to
the power consumption. This includes historical power con-
sumption data, any known building operation schedules and
zone temperature data. The tool is also equipped with the capa-
bility to pull historical weather data for a building location from
the web. The user can also specify or upload electricity pricing
or utility tariff data. Once the upload process is complete the
data structure for learning the different tree based models is
created internally. The GUI also has a small console which is
used to display progress, completion and alert messages for
each action in the upload process.

2. Build models: In the next step of the workflow, the user can
specify which tree-based models should be learned as shown
in Fig. 10. These include, a single regression tree (SRT), cross-
validated regression tree (CV-RT), random forest (RF), boosted
regression tree (BRT) and M5 model based regression tree
(M5). For each method the user may change the parameters
of the training process from the default values. These parame-
ters include the stopping criteria in terms of MinLeaf or the
number of trees in the ensemble and the value for the number
of folds in cross validation. After the models have been trained,
the normalized root mean square value for each method on the
test data is displayed. The user can also visualize and compare
the predicted output vs the ground truth data for the different
methods. For the ensemble methods, the convergence of the
resubstitution error and the feature importance plots can also
be viewed.

3. DR baseline: In the DR baseline tab, the user can specify the
start and end times for a DR event and DR-Advisor generates
the baseline prediction for that duration using the methods
selected during the model identification. The user can also spec-
ify if the baseline uses only weather data or it uses weather plus
building schedule data.

4. DR strategy evaluation: In this step of the workflow, the user
first has to specify the pre-determined DR strategies which
need to be evaluated during the DR event. The user can choose
different control variables and specify their value for the dura-
tion of the DR event. A group of such control variables consti-
tute the DR strategy. The user may specify several DR
strategies, in which different combinations of the control



Fig. 8. Screenshot of the DR-Advisor MATLAB based GUI.

Fig. 9. DR-Advisor workflow.
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variables take different values. Upon executing the DR evaluation
process, DR-Advisor, is capable of selecting the best set of
strategies for the DR event based on load curtailment.

5. DR strategy synthesis: For DR synthesis, two inputs are
required: the user needs to provide an electricity/DR rate struc-
ture and the user needs to specify which of the variables are the
control variables. DR-Advisor then uses the mbCRT (Section 4.1)
algorithm to synthesize and recommend a DR strategy for the
DR event by assigning suitable values to the control inputs.

6. Report generation: Facilities managers need to log reports of
the building’s operation during the DR event. DR-Advisor can
generate summarized reports of how much load for curtailed
and the estimated revenue earned from the DR event. The
report also includes plots of what control actions were recom-
mended by DR-Advisor and the comparison between the esti-
mated baseline power consumption and the actual load
during the event.
7. Case study

DR-Advisor has been developed into a MATLAB toolbox avail-
able at http://mlab.seas.upenn.edu/dr-advisor/. In this section, we
present a comprehensive case study to show how DR-Advisor
can be used to address all the aforementioned demand response
challenges (Section 2) and we compare the performance of our tool
with other data-driven methods.

7.1. Building description

We use historical weather and power consumption data from 8
buildings on the Penn campus (Fig. 11). These buildings are a mix
of scientific research labs, administrative buildings, office buildings
with lecture halls and bio-medical research facilities. The total
floor area of the eight buildings is over 1.2 million square feet
spanned across. The size of each building is shown in Table 1.

http://mlab.seas.upenn.edu/dr-advisor/


Fig. 10. DRAdvisor model identification tab.

Fig. 11. 8 different buildings on Penn campus were modeled with DR-Advisor.
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We also use the DoE Commercial Reference Building (DoE CRB)
simulated in EnergyPlus [19] as the virtual test-bed building. This
is a large 12 story office building consisting of 73 zones with a total
area of 500,000 sq ft. There are 2397 people in the building during
peak occupancy. During peak load conditions the building can con-
sume up to 1.6 MW of power. For the simulation of the DoE CRB
building we use actual meteorological year data from Chicago for
the years 2012 and 2013. On July 17, 2013, there was a DR event
on the PJM ISO grid from 15:00 to 16:00 h. We simulated the DR
event for the same interval for the virtual test-bed building.



Table 1
Model validation with Penn data.

Building name Total area (sq-ft) Floors Accuracy (%)

LRSM 92,507 6 94.52
College Hall 110,266 6 96.40
Annenberg Center 107,200 5 93.75
Clinical Research Building 204,211 8 98.91
David Rittenhouse Labs 243,484 6 97.91
Huntsman Hall 320,000 9 95.03
Vance Hall 106,506 7 92.83
Goddard Labs 44,127 10 95.07
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7.2. Model validation

For each of the Penn buildings, multiple regression trees were
trained on weather and power consumption data from August
2013 to December 2014. Only the weather forecasts and proxy
variables were used to train the models. We then use the DR-
Advisor to predict the power consumption in the test period i.e.,
for several months in 2015. The predictions are obtained for each
hour, making it equivalent to baseline power consumption esti-
mate. The predictions on the test-set are compared to the actual
power consumption of the building during the test-set period.
One such comparison for the clinical reference building is shown
in Fig. 12. The following algorithms were evaluated: single regres-
sion tree, k-fold cross validated (CV) trees, boosted regression trees
(BRT) and random forests (RF). Our chosen metric of prediction
accuracy is the one minus the normalized root mean square error
(NRMSE). NRMSE is the RMSE divided by the mean of the data.
The accuracy of the model of all the eight buildings is summarized
in Table 1. We notice that DR-Advisor performs quite well and the
accuracy of the baseline model is between 92.8% and 98.9% for all
the buildings.
7.3. Energy prediction benchmarking

We compare the performance of DR-Advisor with other data-
driven method using a bench-marking data-set from the American
Society of Heating, Refrigeration and Air Conditioning Engineers
(ASHRAE’s) Great Energy Predictor Shootout Challenge [20]. The
goal of the ASHRAE challenge was to explore and evaluate data-
driven models that may not have such a strong physical basis,
yet that perform well at prediction. The competition attracted
� 150 entrants, who attempted to predict the unseen power loads
Fig. 12. Model validation for the cli
from weather and solar radiation data using a variety of
approaches. In addition to predicting the hourly whole building
electricity consumption, WBE (kW), both the hourly chilled water,
CHW (millions of Btu/h) and hot water consumption, HW (millions
of Btu/h) of the building was also required to be a prediction out-
put. Four months of training data with the following features was
provided: (a) 1. Outside temperature (�F) 2. Wind speed (mph) 3.
Humidity ratio (water/dry air) 4. Solar flux (W/m2). In addition to
these training features, we added three proxy variables of our
own: hour of day, IsWeekend and IsHoliday to account for correla-
tion of the building outputs with schedule.

Finally, we use different ensemble methods within DR-Advisor
to learn models for predicting the three different building attri-
butes. In the actual competition, the winners were selected based
on the accuracy of all predictions as measured by the normalized
root mean square error, also referred to as the coefficient of varia-
tion statistic CV. The smaller the value of CV, the better the predic-
tion accuracy. ASHRAE released the results of the competition for
the top 19 entries which they received. In Table 2, we list the per-
formance of the top 5 winners of the competition and compare our
results with them. It can be seen from Table 2, that the random for-
est implementation in the DR-Advisor tool ranks 2nd in terms of
WBE CV and the overall average CV. The winner of the competition
was an entry from David Mackay [21] which used a particular form
of bayesian modeling using neural networks.

The result we obtain clearly demonstrates that the regression
tree based approach within DR-Advisor can generate predictive
performance that is comparable with the ASHRAE competition
winners. Furthermore, since regression trees are much more inter-
pretable than neural networks, their use for building electricity
prediction is, indeed, very promising.
7.4. DR-evaluation

We test the performance of 3 different rule based strategies
shown in Fig. 13. Each strategy determines the set point schedules
for chilled water set-point, zone temperature set-point, and light-
ing set-point during the DR event. These strategies were derived
on the basis of automated DR guidelines provided by Siemens
[22]. Chilled water set point is same in Strategy 1 (S1) and Strategy
3 (S3), higher than that in Strategy 2 (S2). Lighting level in S3 is
higher than in S1 and S2. The chilled water set-point (CHSTP) lies
between ½6;10� 
C, the zone temperature set-point (CLGSTP) varies
nical research building at Penn.



Table 2
ASHRAE energy prediction competition results.

ASHRAE team ID WBE CV CHW CV HW CV Average CV

9 10.36 13.02 15.24 12.87
DR-Advisor 11.72 14.88 28.13 18.24
6 11.78 12.97 30.63 18.46
3 12.79 12.78 30.98 18.85
2 11.89 13.69 31.65 19.08
7 13.81 13.63 30.57 19.34

Fig. 13. Rule-based strategies used in DR evaluation. CHSTP denotes Chiller set
point and CLGSTP denotes Zone Cooling temperature set point.

Fig. 14. Prediction of power consumption for 3 strategies. DR Evaluation shows that
Strategy 1 (S1) leads to maximum power curtailment.
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between ½24;28� 
C, and the lighting level (LIGHT) varies between
½0:5;1� in terms of the fraction of lights ON.

We use auto-regressive trees (Section 3.3) with order, d ¼ 6 to
predict the power consumption for the entire duration (1 h) at
the start of DR Event. In addition to learning the tree for power
consumption, additional auto-regressive trees are also built for
predicting the zone temperatures of the building. At every time
step, first the zone temperatures are predicted using the trees for
temperature prediction. Then the power tree uses this temperature
forecast along with lagged power consumption values to predict
the power consumption recursively until the end of the prediction
horizon.

Fig. 14 shows the power consumption prediction using the
auto-regressive trees and the ground truth obtained by simulation
of the DoE CRB virtual test-bed for each rule-based strategy. Based
on the predicted response, in this case DR-Advisor chooses to
deploy the strategy S1, since it leads to the least amount of electric-
ity consumption. The predicted response due to the chosen strat-
egy aligns well with the ground truth power consumption of the
building due to the same strategy, showing that DR strategy eval-
uation prediction of DR-Advisor is reliable and can be used to
choose the best rule-based strategy from a set of pre-determined
rule-based DR strategies.
7.5. DR-synthesis

We now evaluate the performance of the mbCRT (Section 4.1)
algorithm for real-time DR synthesis. Similar to DR evaluation,
the regression tree is trained on weather, proxy features, set-
point schedules and data from the building. We first partition the
set of features into manipulated features (or control inputs) and
non-manipulated features (or disturbances). There are three
control inputs to the system: the chilled water set-point, zone air
temperature set-point and lighting levels. At design time, the
model based tree built (Algorithm 1) has 369 leaves and each of
them has a linear regression model fitted over the control inputs
with the response variable being the power consumption of the
building.

In addition to learning the power consumption prediction tree,
19 additional model based trees were also built for predicting the
different zone temperatures inside the building. When the DR
event commences, at every time-step (every 5 min), DR-Advisor
uses the mbCRT algorithm to determine which leaf, and therefore,
which linear regression model will be used for that time-step to
solve the linear program (Eq. (5)) and determine the optimal values
of the control inputs to meet a sustained response while maintain-
ing thermal comfort.

Fig. 15 shows the power consumption profile of the building
using DR-Advisor for the DR event. We can see that using the
mbCRT algorithm we are able to achieve a sustained curtailed
response of 380 kW over a period of 1 h as compared to the base-
line power consumption estimate. Also shown in the figure is the
comparison between the best rule based fixed strategy which leads
to the most curtailment in Section 7.4. In this case the DR strategy
synthesis outperforms the best rule base strategy (from Section 7.4,
Fig. 14) by achieving a 17% higher curtailment while maintaining
thermal comfort. The rule-based strategy does not directly account
for any effect on thermal comfort. The DR strategy synthesized by
DR-Advisor is shown in Fig. 16. We can see in Fig. 17 how the
mbCRT algorithm is able to maintain the zone temperatures inside
the building within the specified comfort bounds. These results
demonstrate the benefit of synthesizing optimal DR strategies as
opposed to relying on fixed rules and pre-determined strategies
which do not account for any guarantees on thermal comfort.
Fig. 18 shows a close of view of the curtailed response. The leaf
node which is being used for the power consumption constraint
at every time-step is also shown in the plot. We can see that the
model switches several times during the event, based on the fore-
cast of disturbances.

These results show the effectiveness of the mbCRT algorithm to
synthesize DR actions in real-time while utilizing a simple data-
driven tree-based model.
7.5.1. Revenue from demand response
We use Con Edison utility company’s commercial demand

response tariff structure [23] to estimate the financial reward



Fig. 15. DR synthesis using the mbCRT algorithm for July 17, 2013. A curtailemnt of 380 kW is sustained during the DR event period.

Fig. 16. Optimal DR strategy as determined by the mbCRT algorithm.

Fig. 17. The mbCRT algorithm maintains the zone temperatures within the specified comfort bounds during the DR event.
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obtained due to the curtailment achieved by the DR-Advisor for
our Chicago based DoE commercial reference building. The utility
provides a $25/kW per month as a reservation incentive to partic-
ipate in the real-time DR program for summer. In addition to that, a
payment of $1 per kW h of energy curtailed is also paid. For our
test-bed, the peak load curtailed is 380 kW. If we consider � 5 such
events per month for 4 months, this amounts to a revenue of
�$45,600 for participating in DR which is 37.9% of the energy bill
of the building for the same duration ($120,317). This is a signifi-
cant amount, especially since using DR-Advisor does not require
an investment in building complex modeling or installing sensor
retrofits to a building.



Fig. 18. Zoomed in view of the DR synthesis showing how the mbCRT algorithm selects the appropriate linear model for each time-step based on the forecast of the
disturbances.
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8. Related work

There is a vast amount of literature [24–27] which addresses
the problem demand response under different pricing schemes.
However, the majority of approaches so far have focused either
on rule-based approaches for curtailment or on model-based
approaches, such as the one described in [25]; in which model pre-
dictive control is used for DR based on a grey-box model of a build-
ing. Auslander et al. [24] uses a high-fidelity physics based model
of the building to solve a problem similar to the DR evaluation
problem. Van Staden et al. [27] uses model predictive control for
closed-loop optimal control strategy for load shifting in a plant that
is charged for electricity on both time-of-use and peak demand
pricing.

One of the seminal studies of application of model predictive
control on real buildings for demand response and energy-
efficiency operation came from the Opticontrol project [10]. After
several years of work on using grey-box and white box models
for demand response control design, the authors state that the use-
fulness of any model based controller must be measured by not
only its benefits and savings but also its incurred costs, such as
the necessary hardware and software and the systems design,
implementation, and maintenance effort. They further conclude
that the biggest hurdle to mass adoption of intelligent building
control is the cost and effort required to capture accurate dynam-
ical models of the buildings. Since DR-Advisor only learns an aggre-
gate building level model and combined with the fact that weather
forecasts from third party vendors are expected to become
cheaper; there is little to no additional sensor cost of implementing
the DR-Advisor recommendation system in large buildings. The
difficulties in identifying models for buildings is also highlighted
in [28]. The authors observe that while model creation is men-
tioned only marginally in majority of the academical works dealing
with model predictive control, these usually assume that the
model of the system is either perfectly known or found in litera-
ture, the task is much more complicated and time consuming in
case of a real application and sometimes, it can be even more com-
plex and involved than the controller design itself. There are ongo-
ing efforts to make tuning and identifying white box models of
buildings more autonomous [11].
There is recent work, which has explored aspects of modeling,
implementation and implications of demand response buildings
[29–34], however, their focus has mainly been on the residential
sector. Dupont et al. [31] shows that in general demand response
contributes to a lower cost, higher reliability, and lower emission
level of power system operation and highlights the societal value
of DR. In [33] authors study the short term and long term affects
of DR on residential electricity consumers through an elaborate
empirical study. In [35], the design of a living space comfort regu-
lator using fuzzy logic is described. The authors define comfort as a
fuzzy concept, different for different people and depending on the
work done in the space. A reduced order physics based, grey-box
modeling technique for simulating residential electric demand is
presented in [30]. In [34], a framework for multiple levels of build-
ing energy simulation calibration is introduced. The authors of [36]
use a low-order linear grey-box model to implement model predic-
tive control on an eight-story university building. The ability to
determine the correct response for large commercial buildings
(from DR evaluation or DR synthesis) on a fast time scales (1–
5 min) using purely data-driven methods makes both our approach
and tool, novel.

Several machine learning and data-driven approaches have also
been utilized before for forecasting electricity load. We already
compared the performance of DR-Advisor against several data-
driven methods in Section 7.3. In [37], a comprehensive literature
review of aver 100 papers is presented. It highlights the applica-
tions enabled by availability of smart meter data, such as early
power outage detection, peak load reduction, and electricity con-
sumption reduction. In [38], seven different machine learning algo-
rithms are applied to a residential data set with the objective of
determining which techniques are most successful for predicting
next hour residential building consumption. Kialashaki and Reisel
[39] uses artificial neural networks and regression models for mod-
eling the energy demand of the residential sector in the U.S. A fore-
casting method for cooling and electricity load demand is
presented in [40], while a statistical analysis of the impact of
weather on peak electricity demand using actual meteorological
data is presented in [41]. In [42] a software architecture using par-
allel computing is presented to support data-driven demand
response optimization. The shortcoming of work in this area is
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twofold: First, the time-scales at which the forecasts are generated
ranges from 15 to 20 min to hourly forecast; which is too coarse
grained for DR events and for real-time price changes. Secondly,
the focus in these methods is only on load forecasting but not on
control synthesis, whereas the mbCRT algorithm presented in this
paper enables the use of regression trees for control synthesis for
the very first time. A comparison of the demand response strate-
gies of existing modeling tools is made in [43]. In this study, the
capability of three modeling tools to assess the potential for
demand response in Corvo Island was studied. One of the conclu-
sions which the authors draw is that modeling approaches of
demand response strategies are still in early stages, and that rule
based strategies are limited in their effectiveness to curtail.
9. Conclusions and ongoing work

We present a data-driven approach for modeling and control for
demand response of large scale energy systems which are inher-
ently messy to model using first principles based methods. We
show how regression tree based methods are well suited to
address challenges associated with demand response for large C/
I/I consumers while being simple and interpretable. We have incor-
porated all our methods into the DR-Advisor tool – http://mlab.
seas.upenn.edu/dr-advisor/.

DR-Advisor achieves a prediction accuracy of 92.8–98.9% for
eight buildings on the University of Pennsylvania’s campus. We
compare the performance of DR-Advisor on a benchmarking
data-set from AHRAE’s energy predictor challenge and rank 2nd
among the winners of that competition. We show how DR-
Advisor can select the best rule-based DR strategy, which leads
to the most amount of curtailment, from a set of several rule-
based strategies. We presented a model based control with regres-
Fig. A.19. Top right: 2D feature space by recursive binary splitting. Top left: partition tha
to the partition. Bottom right: perspective plot of the prediction surface.
sion trees (mbCRT) algorithm which enables control synthesis
using regression tree based structures for the first time. Using
the mbCRT algorithm, DR-Advisor can achieve a sustained curtail-
ment of up to 380 kW during a DR event. Using a real tariff struc-
ture, we estimate a revenue of � $45;600 for the DoE reference
building over one summer which is 37.9% of the summer energy
bill for the building. The mbCRT algorithm outperforms even the
best rule-based strategy by 17%. DR-Advisor bypasses cost and
time prohibitive process of building high fidelity models of build-
ings that use grey and white box modeling approaches while still
being suitable for control design. These advantages combined with
the fact that the tree based methods achieve high prediction accu-
racy, make DR-Advisor an alluring tool for evaluating and planning
DR curtailment responses for large scale energy systems.
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Appendix A. Building regression trees

We explain how regression trees are built using an example
adapted from [44]. Tree-based methods partition the feature space
into a set of rectangles (more formally, hyper-rectangles) and then
fit a simple model in each one. They are conceptually simple yet
powerful. Let us consider a regression problem with continuous
response Y and inputs X1 and X2, each taking values in the unit
interval. The top left plot of Fig. A.19 shows a partition of the fea-
ture space by lines that are parallel to the coordinate axes. In each
partition element we can model Y with a different constant.
t cannot be obtained from recursive binary splitting. Bottom left: tree corresponding

http://mlab.seas.upenn.edu/dr-advisor/
http://mlab.seas.upenn.edu/dr-advisor/
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However, there is a problem: although each partitioning line has a
simple description like X1 ¼ k, some of the resulting regions are
complicated to describe. To simplify things, we can restrict our-
selves to only consider recursive binary partitions, like the ones
shown in the top right plot of Fig. A.19. We first split the space into
two regions, and model the response by the mean of Y in each
region. We choose the variable and split-point to achieve the best
prediction of Y. Then one or both of these regions are split into two
more regions, and this process is continued, until some stopping
rule is applied. This is the recursive partitioning part of the algo-
rithm. For example, in the top right plot of Fig. A.19, we first split
at X1 ¼ t1. Then the region X1 6 t1 is split at X2 ¼ t2 and the region
X1 > t1 is split at X1 ¼ t3. Finally, the region X1 > t3 is split at
X2 ¼ t4. The result of this process is a partition of the data-space
into the five regions R1;R2; . . . ;R5. The corresponding regression
tree model predicts Y with a constant ci in region Ri i.e.,

T̂ðXÞ ¼
X5
i¼1

ciI ðX1;X2Þ 2 Rif g ðA:1Þ

This samemodel can be represented by the binary tree shown in the
bottom left of Fig. A.19. The full data-set sits at the top or the root of
the tree. Observations satisfying the condition at each node are
assigned to the left branch, and the others to the right branch.
The terminal nodes or leaves of the tree correspond to the regions
R1;R2; . . . ;R5.

A.1. Node splitting criteria

For regression trees we adopt the sum of squares as our split-
ting criteria i.e. a variable at a node will be split if it minimizes
the following sum of squares between the predicted response
and the actual output variable.X
ðyi � T̂ðxiÞÞ

2 ðA:2Þ

It is easy to see that the best response ci (from Eq. (A.1)) for yi from
partition Ri is just the average of output samples in the region Ri i.e.

ci ¼ avgðyijxi 2 RiÞ ðA:3Þ
Finding the best binary partition in terms of minimum sum of
squares is generally computationally infeasible. A greedy algorithm
is used instead. Starting with all of the data, consider a splitting
variable j and split point s, and define the following pair of left
(RL) and right (RR) half-planes

RLðj; sÞ ¼ XjXj 6 s
� �

;

RRðj; sÞ ¼ XjXj > s
� � ðA:4Þ

The splitting variable j and the split point s is obtained by solving
the following minimization:

min
j;s

min
cL

X
xi2RLðj;sÞ

ðyi � cLÞ2 þmin
cR

X
xi2RRðj;sÞ

ðyi � cRÞ2
" #

ðA:5Þ

where, for any choice of j and s, the inner minimization in Eq. (A.5)
is solved using

cL ¼ avgðyijxi 2 RLðj; sÞÞ
cR ¼ avgðyijxi 2 RRðj; sÞÞ

ðA:6Þ

For each splitting variable Xj, the determination of the split point s
can be done very quickly and hence by scanning through all of the
inputs (Xi’s), the determination of the best pair ðj; sÞ is feasible. Hav-
ing found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions.
Then this process is repeated on all of the resulting regions.
Rather than splitting each node into just two regions at each
stage, we might consider multiway splits into more than two
groups. While this can sometimes be useful, it is not a good general
strategy. The problem is that multiway splits fragment the data too
quickly, leaving insufficient data at the next level down. Hence we
would want to use such splits only when needed. Also multiway
splits can be achieved by a series of binary splits.
A.2. Stopping criteria and pruning

Every recursive algorithm needs to know when it’s done, i.e. it
requires a stopping criteria. For regression trees this means when
to stop splitting the nodes. A very large tree might over fit the data,
while a small tree might not capture the important structure. Tree
size is a tuning parameter governing the models complexity, and
the optimal tree size should be adaptively chosen from the data.
One approach is to split tree nodes only if the decrease in sum-
of-squares due to the split exceeds some threshold. However, this
strategy is myopic, since a seemingly worthless split might lead to
a very good split below it. A preferred, strategy is to grow a large
tree, stopping the splitting process only when some minimum
number of data points at a node (MinLeaf) is reached. Then this
large tree is pruned using cost-complexity pruning methods.

Define a subtree T � T0 to be any tree that can be obtained by
pruning T0, i.e. collapsing any number of its non-terminal nodes.
Let node i corresponding to the partition Ri. jTj denotes the number
of terminal nodes in T Define,

Ni ¼ # xi 2 Rif g;

ĉi ¼ 1
Ni

X
xi2Ri

yi;

QiðTÞ ¼
1
Ni

X
xi2Ri
ðyi � ĉiÞ2

ðA:7Þ

where Ni is the number of samples in the partition Ri; ĉi is the esti-
mate of y within Ri and QiðTÞ is the mean square error of the esti-
mate ĉi. The cost complexity criteria is then defined as:

CaðTÞ ¼
XjTj
i¼1

NiQiðTÞ þ ajTj ðA:8Þ

The goal is to find, for each a, the subtree Ta � T0 to minimize CaðTÞ.
The tuning parameter a P 0 governs the trade off between tree size
and its goodness of fit to the data. For each a one can show that
there is a unique smallest subtree Ta that minimizes CaðTÞ [45].
Estimation of a is achieved by cross-validation.
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